

HANcoder
advanced
workshop

Version 0.5
7/12/2016

HANcoder advanced workshop

A guide to use model referencing, variants and HANcoder in

order to use the advantages of model based design.

Workshop Index, v0.5

Page 1

Index

H A N C O D E R A D VA N C E D W O R K S H O P

Contents

1 INTRODUCTION ... 2

2 HARDWARE .. 3

3 SIMULINK MODEL... 3

3.1 Plant model .. 4

3.2 Adding a model reference .. 4

3.3 Controller model .. 6

3.4 Variant subsystems .. 7

3.1.4 The code generation variant .. 7

3.2.4 The Direct Feedthrough variant ... 7

3.3.4 Variant control ... 8

3.4.4 Creating a variant subsystem .. 9

3.5.4 Adding an extra variant.. 10

3.5 Creating a bus .. 12

3.6 Defining inputs and outputs .. 13

3.7 Connecting the controller model... 15

3.8 Simulating and tuning .. 15

4 TESTING THE COMPLETED CONTROLLER ... 16

4.1 Creating a HANtune layout .. 16

4.2 Connect to the Olimexino .. 19

4.3 Test the controller ... 21

5 CREATING THE PLANT MODEL... 22

5.1 Making the test setup .. 22

5.2 Logging data with HANtune ... 24

5.3 Reading the data in Matlab ... 25

5.4 Using the System Identification Toolbox ... 26

APPENDIX 1: MODEL SETTINGS FOR MODEL REFERENCE .. 29

Index, v0.5

Page 2

1 INTRODUCTION

This document describes how to do simulations in Simulink of the hardware in combination with the a

controller made with the HANcoder toolbox. By using this approach it will be possible to quickly test the

controller in simulations. This is especially valuable when the hardware is not available of unsafe situations

can occur.

The system to be controlled is a simple DC-motor. The objective is to use a model of the DC motor in

Simulink in combination with a controller using the HANcoder blocks. The controller can be tuned and

tested in Simulink before checking the results on the real system.

If you are not familiar with the HANcoder tools and the workflow it is advised to first read the Getting

Started document and then do the ‘basic’ workshop.

The following subjects will be treated in the workshop: Model referencing, variant subsystems, Simulink

busses, logging in HANtune, data import in Matlab and System Identification with Matlab.

Workshop Index, v0.5

Page 3

2 HARDWARE

For this workshop an Olimexino will be used. On top of the Olimexino board a shield is added with a

motor driver or H-bridge, the Ardumoto. A signal on pin D3 controls the duty cycle to the motor and a

digital signal on pin D12 controls the direction. A small DC motor with an encoder connected to the shaft

on one side and a gearbox on the other side is connected to the H-bridge. The encoder is connected to

pins D6 and D7 and gives around 14000 pulses per rotation of the output shaft. Next to that there is a

potentiometer attached to the Olimexino on pin A3. The potentiometer will serve as a set point for the

motor speed. The further the potentiometer is turned the faster the motor should turn. This very simple

system was also used in the ‘basic’ workshop.

3 SIMULINK MODEL

The model which will be used for the workshop is missing certain parts. The idea is that you will have to

make the model work and by doing so all important steps to enable simulation and code generation will

be treated. The resulting model will allow the user to check the controller performance both in Simulink as

in the real world.

The first step is to open the prepared model by double clicking the ‘Top_Model.slx’ model file, located in

the folder HANcoder_STM32Target\Target:

Index, v0.5

Page 4

In the base model you can see a subsystem called Plant model. This is not an ordinary subsystem but a

model reference. This means a model can act as a subsystem in another model. A model reference can be

recognized by the triangles in the corners of the block.

In this case the Plant model subsystem is a reference to a model called DCmotorTransferFunction.slx.

Please double click on this model reference to view its contents.

3.1 Plant model

The model is opened in a new screen. The heart of the model is a transfer function which represents the

input to output relation. The transfer function is the relation between the PWM duty cycle and the speed of

the motor (without load). An integrator is added because in the real system not the speed but the position

is measured. This (black box) model of the electric motor is heavily simplified and is only valid for duty

cycles under the 30%. This is to keep this workshop as simple as possible and keep the focus on the

workflow.

With a manual switch you can choose the input to the transfer function: either a step or an input coming

from another switch. Double clicking the manual switch changes the input to the transfer function to the

step input. After running the model the speed and position response on the step input can be inspected

using the scope. (running this model will only be possible after finishing this workshop)

The other input of the manual switch depends on the signals PIoutput and Direction, if Direction is true the

input to the transfer function is PIoutput and if Direction is false it is minus PIoutput. This represents the

control of the H-bridge as described in the introduction.

The signals PIoutput and Direction are coming from a bus selector. A bus in Simulink is equivalent to a

structure in C, in different words it is a bundle of different signals. With the bus selector it is possible to

extract the signals from the bus. More about buses will follow later in this workshop.

Please set the manual switch to the bottom position and close the DCmotorTransferFunction.slx.

3.2 Adding a model reference

Now we will add a model reference subsystem in the base model. This referenced model will contain the

control algorithm and the HANcoder blocks to automatically generate code.

Go to the library browser and go to Simulink/Ports & Subsystems. Next, choose the block ‘Model’ and

place the block in the model left of plant model.

Workshop Index, v0.5

Page 5

Double click on the newly added block to choose the model it should reference to. Using the browse button

navigate to the model ‘HANcoder_Olimexino_Controller.slx’. Click OK. The name of the model now

appears in the model reference subsystem. Resize the block so the name becomes readable.

We now have two subsystems which are a link to other models, the HANcoder_Olimexino_Controller.slx

and the DCmotorTransferFunction.slx.

Double click on the HANcoder_Olimexino_Controller subsystem to go into the controller model, this will

bring you to the start screen of the HANcoder model.

Index, v0.5

Page 6

3.3 Controller model

Double click on the picture of the Olimexino to enter the algorithm. The model exists out of some system

settings blocks which are grey, a subsystem for the inputs, a subsystem for the actual control algorithm and

lastly a subsystem for the outputs. The separation of inputs and outputs has a purpose. If there is a new

version of the HANcoder blockset or if the user wants to switch from the Olimexino to the Rexroth, the

control subsystem can be copied into the new model and only the input and output subsystems have to be

remade.

Go into the Control subsystem. There are two separate control algorithms here. The top one controls the

motor speed with a PI controller. The input for the controller is the difference called error between the

desired speed also called the reference, and the measured speed.

The other algorithm controls the speed of the LED by switching when the button is pressed.

Workshop Index, v0.5

Page 7

Now go back and take a look in the Inputs subsystem. In the Inputs subsystem there are three inputs: the

first two are the Reference, from the potentiometer, and the MotorPosition from the encoder. These inputs

are the ones needed for the motor control. The third input is the button for switching between the LED

frequencies.

3.4 Variant subsystems

The DesiredSpeed comes from another special kind of subsystem, a variant

subsystem named Driver Input. A variant subsystem can be recognized by the

two squares in the lower left corner. Inside this subsystem there are again two

other subsystems. One is called Code Generation and the other one Direct

Feedthrough. Only one of these two subsystems is active while the other one is inactive or ‘commented

out’. Blocks that are commented out are faded out / lighter.

3-1 Inside the Driver Input variant subsystem

The currently active variant is Direct Feedthrough. At this moment it can be seen that the Direct

Feedthrough is active, this is also displayed on the parent block Driver Input.

What is remarkable is that the input and output blocks don’t seem to be connected to the subsystems. The

connections between in- and outputs will be automatically resolved by Simulink.

3.1.4 The code generation variant

3-2 The code generation variant

Inside the Code Generation subsystem the above blocks can be found. The Code Generation subsystem

will be used when generating code for the Olimexino. The HANcoder block for reading the voltage of the

potentiometer is located in this block. The input to this subsystem comes from the Top Model and is only

useful during simulation, it can be neglected when generating code. Terminating the signal is used to

prevent warnings from Simulink about unconnected blocks.

3.2.4 The Direct Feedthrough variant

The other subsystem is the Direct Feedthrough variant. In this subsystem the output is directly connected to

the input. When running a simulation this means that the signal

from the Top Model is directly routed into the controller. The

signal from the Top Model should have the same

characteristics as the value from the measurement in the Code

Index, v0.5

Page 8

Generation block.

3.3.4 Variant control

Simulink uses Simulink.Variant objects to determine which subsystem is active, these are defined in the

workspace. Please go back to the screen where you can see the Variant Subsystem Driver Input. Now

right click on the Driver Input variant subsystem and choose Block Parameters (Subsystem). The following

screen will appear:

Here the variant control can be defined. Each subsystem is controlled with a Simulink.Variant object,

specified in the second column. When the condition of these Variant controls are met the Variant

Subsystem is activated. Press cancel to close this screen.

Next we will set up a variant control for one of the outputs. Please navigate to the Outputs subsystem.

Workshop Index, v0.5

Page 9

3.4.4 Creating a variant subsystem

As mentioned before the direction can be controlled by toggling pin D12. The current model can only

control the speed of the motor in one direction. If the motor should also be able to turn backwards it

makes sense to implement this in the controller model. For this a new variant subsystem will be made. Go

to the library browser and from Simulink/Ports & Subsystems choose the Variant Subsystem block.

Put the block under the Controller Output subsystem and name it Direction.

The direction pin should toggle when the output of the controller is less than 0. So from the library Simulink

→Logic and Bit Operations take the Compare To Zero block. Connect the input to the block with the

controller output, before the absolute block. Double click the block and select the smaller than sign, <. The

output of the Compare To Zero block serves as the input to the new Variant Subsystem ‘Direction’.

3-3 New Variant subsystem added

Now go into the Variant Subsystem, Direction, and add two ‘normal’ subsystems from the library Simulink

→ Ports & Subsystems. Name the first one Code Generation and the second one Direct Feedthrough.

Index, v0.5

Page 10

Open the Code Generation subsystem and add a Digital Output

block from the library HANcoder STM32 Target→Olimexino STM32

→Digital Outputs. Connect the input to the Digital Output block. Set

the Digital Output to the correct pin by double clicking it and

choosing pin D12 from the pull-down menu. Take a Ground block

from the Library Simulink→Sources and connect it to the output block.

This is again to prevent Simulink warnings during code generation. The Code Generation subsystem is now

ready.

The other subsystem, Direct Feedthrough, is already done since the standard setup in Simulink is to connect

the input directly to the output, just as we want in our model.

Now the variant subsystem still needs to know under which conditions to use which variant. Go up to the

level where you can see the base block for the variant subsystem, Direction. Right-click on the block and

select Block Parameters (Subsystem). The same screen as before appears. Now type the correct

Simulink.Variant object at the subsystem; VCcodeGeneration for the Code Generation and

VCdirectFeedthrough for the direct feedthrough. If the Variant control was recognized the condition will

be automatically updated. Click OK when done.

To test if it all works correctly change the condition for the variants by typing ‘VCvariant = 0’ in the

command window. The block should update its text and when you enter the block the Code Generation

subsystem should be activated. (the text will be updated when the model window is active)

3.5.4 Adding an extra variant

When you have a (white box) model of a physical system and the outputs of this plant model are in

physical units like Nm or Watts you can choose to add a model of the sensor/actuator in another variant.

Let’s add an extra variant to the model as an exercise. Go into the variant subsystem ‘Direction’ and add

another subsystem, give it the name Electrical Simulation. Leave the contents unchanged.

Workshop Index, v0.5

Page 11

The condition when this variant should be used is not defined yet, this is done by creating a

Simulink.Variant object by typing: ‘VCelectricalSimulation = Simulink.Variant;’ in the command window.

Now the condition can be set by double clicking on the newly created Simulink Variant object in the

workspace:

Type ‘VCvariant == 2’ in the window and click OK. Now go back to the model and open the Block

Parameters (Subsystem) window again. (right click on the Variant Subsystem ‘Direction’). In the second

column behind Electrical Simulation type the new Simulink Variant object: VCelectricalSimulation. The new

condition should automatically be shown. Press OK to close the window.

Test the new variant by setting VCvariant to 2 (type VCvariant =2; in the command window).

Set the VCvariant back to 1 to enable the direct feedthrough. (Note: the actual Actuator model was not

made)

Index, v0.5

Page 12

3.5 Creating a bus

The Direction variant was successfully created, next the output from the Direction block needs to be routed.

For this we will use a Simulink bus.

In this model it isn’t really necessary because not many

signals are used but in larger, more complex models, buses

will really help with keeping the model readable and

maintainable. To create a bus use the Bus Creator from the

Simulink→Signal Routing library. Disconnect the PIoutput

signal from the Output block and connect it to the first input

of the bus creator. Connect the output of the Direction

subsystem to the second input of the bus creator. Give this

signal a name by double clicking it and typing ‘Direction’.

The line will turn bleu when the signal is selected. The output of the bus creator can now be connected to

the Output block.

The bus that has been created is only known in the controller model. This bus will be used as an output to

the Top Model. In the Top Model it is not known which signals are in the bus and Simulink will not know

how to deal with this bus. To solve this a Simulink.Bus can be created. This is a definition or description of

the bus so that all blocks and models which use this bus will know exactly what the bus contains. To create

this bus a tool can be used from Matlab, start the tool by typing ‘buseditor’ in the command window. The

Bus Editor is now started.

To create a new bus in the Base Workspace click the add bus button, , in the toolbar. Now in the right

side of the window give the bus the name: ControllerOutputBus. Click Apply to confirm. Now the signals

can be added to the bus, in a bus these are called bus elements. Click the add element button, . Give

the element the name PIoutput, change the data type to uint16 and click apply. Now add a Direction

element to the same bus and set the data type to Boolean. Click apply before exiting the bus editor.

To use the defined bus go to the bus creator in Simulink and double click it. Select the ControllerOutputBus

from the drop down menu as Output data type. See below:

Workshop Index, v0.5

Page 13

.

3.6 Defining inputs and outputs

To enable interaction between the controller model and the top model some in- and outputs are needed.

These need to be defined at the highest level of the controller model, this is the level where the picture of

the Olimexino is visible. Go there by clicking the or by clicking HANcoder_Olimexino_Controller in the

bar above the model.

Index, v0.5

Page 14

Add and connect an input on the left side of the model and an output at the right side. The input block can

be found at the Simulink->Sources library and the output at the Simulink->Sinks library. Because these in-

and outputs are connected to the top model the data types must be defined. Double click both blocks and

change the data type in the Signal Attributes tab to ControllerInputBus for the input and

ControllerOutputBus for the output.

Run the model to check if there are no errors. The lines to the input and output now get thicker, this

indicates that this line represents a bus.

Save the model and go back to the top model.

Workshop Index, v0.5

Page 15

3.7 Connecting the controller model

In the Top Model the input and output have now been added to the model reference of the controller

model. These can’t be directly connected to the reference input and the plant model because the sample

times are different. The controller works with time steps, it samples its inputs and updates its outputs at a

certain frequency. The controller is a digital or discrete system. The plant model and reference represent

the real world and they are therefore simulated using continuous time, it is an analog or continuous system.

To solve the difference use the Rate Transition block from the Simulink→Signal Attributes library. Place

one of these blocks at the input and one at the output of the controller model. Now connect all lines and

run the model. Simulink now automatically determines how to deal with each rate transfer.

Note: Getting a default HANcoder model to operate as referenced model requires changing 3 settings. These are

already adapted in the prepared model for this workshop, to see which settings are needed to be changed please

refer to Appendix 1: Model settings for model reference

3.8 Simulating and tuning

The model is now ready for simulation. Please press the Run button in the Top Model. Check to see if the

model ran correctly by checking the Scope showing the MotorPosition. If the model didn’t seem to run

check if VCvariant is set to 1.

Now try to find values for the proportional and integral parts of the PI controller that result in a stable

and fast step response without too much overshoot. Pay attention that the Kp and Ki parameters are

Simulink.Parameters so you can’t simply type Kp = 0.4; Instead to change the value either use the dialog

that appears when you double-click the name in the workspace or type: Kp.Value = 1;

The results of the simulation can be seen on the Scope located inside the Plant model. Note that the speed

is indicated in pulses per second and because the encoder gives around 14000 pulses per revolution the

values for the speed get very high.

Once the values for Kp and Ki are found it is time to move on to test the controller in the real world.

Index, v0.5

Page 16

4 TESTING THE COMPLETED CONTROLLER

To generate code for the Olimexino first the variant subsystems should be set to Code Generation. Type:

VCvariant = 0; in the Matlab command window. This will switch the variant subsystems to Code

Generation. Now the controller model can be build by pressing the incremental build button, , or by

pressing Ctrl+B in the HANcoder_Olimexino_Controller window. When the build process is successfully

completed the program can be flashed onto the Olimexino in the usual way using MicroBoot. (MicroBoot

will be started automatically)

Test if the program works by turning the potentiometer. If the motor starts oscillation turn the potentiometer

back to the zero position and reset the controller. These oscillations occur when an instable controller is

used.

4.1 Creating a HANtune layout

To see what is happening inside the controller HANtune will be used. To connect to the Olimexino with

HANtune, the ASAP2 file (.a2l) has to be loaded in HANtune. To do this, start-up HANtune and right click

on ASAP2 files. Click add ASAP2 file and search for the .a2l file in the target directory of HANcoder.

After the ASAP2 file is loaded, it appears in the ASAP2 folder. Double click

HANcoder_Olimexino_Controller.a2l to load all signals and parameters from the a2l file. When it is

loaded, the name will turn bold. After the program is loaded, a layout must be added. To add a layout,

right click layouts and click on New Layout. HANtune will ask to name the Layout, name the Layout

Controller Layout and click on OK.

Workshop Index, v0.5

Page 17

The layout is now added to the layouts folder. To load the layout, double click on Controller Layout.

When the layout is loaded, the name will turn bold.

To add editors and viewers to the layout, click on the ASAP2 elements tab on the left of the window. In

here the signals and parameters are shown.

Add the InputByHANtune parameter by dragging it into the layout. HANtune will ask what kind of editor

is desired. Click on RadioButtonEditor. When this editor is added to the dashboard, it first has to be given

the right settings. To do this right-click on option 1 in the editor. Go to Modify options and name option 1:

Zero Input with value is 0. Name option 2: Final Value. This value must be the same as the step block in the

top model (35000) so the response from the simulation can be compared with that from the real world.

Index, v0.5

Page 18

Add the InputSwitch parameter to the layout and make it a ButtonEditor. Modify the active and inactive

value by right-clicking the button  modify values. Set the active value to 1 and the inactive value to 0.

Add the Ki parameter and Kp parameter to the layout by dragging them together into the layout and

choosing MultiEditor.

Now it is time to add the signals. Drag the signal MeasuredSpeed into the layout and make it a

ScopeViewer. Drag the signal DesiredSpeed into the ScopeViewer to add the signal. The ScopeViewer

has two important features for this workshop: the Auto scale feature and the Hold feature.

To drag, delete or scale an editor or viewer, use Ctrl+r.

Now the layout is finished:

Workshop Index, v0.5

Page 19

4.2 Connect to the Olimexino

After the layout is done, it is time to connect HANtune to the setup. This is done by clicking on The

Communication tab  connect, or by pressing F5.

To set up the connection, a few settings have to be adjusted. Set the Connection type on XCP on

USB/UART and click on settings.

To make sure that the right COMport is selected, go to the Windows device manager (in Dutch:

Apparaatbeheer)  Expand the Ports (COM & LPT) dropdown  the COMport is shown.

After the COMport is set, click on OK and then Connect & Request.

Index, v0.5

Page 20

To make the scope more precise, the DAQlist prescaler can be adjusted. Set the Prescaler to 2 by clicking

on the section and typing in 2. The model is run every 10ms, so at 100Hz. HANtune by default only

requests the signal values from the controller once every ten times the model is run. Changing the prescaler

to 2 will make HANtune request the signals every 2 cycles or at 50Hz.

Workshop Index, v0.5

Page 21

4.3 Test the controller

When the InputSwitch parameter is set to 1 the setup can be tested and compared with the simulation. To

do this, switch the RadioButton from Zero Input to Final Value while connected. Press the Hold button to

stop the scope if desired. Example results for both real world test (left) and simulation (right) are shown

below:

Note: The results can differ from the simulation because of the first-order model that was used does not

adequately represent the reality.

Further tune the controller gains Kp and Ki until a satisfactory step response has been realised. If desired

you can switch back to controlling the motor speed with the potentiometer by pressing the ButtonEditor

which controls the InputSwitch.

Index, v0.5

Page 22

5 CREATING THE PLANT MODEL

In this part a simple linear model from the system will be made. Only the in- and output data is used to

construct this model. Instead of the model used in the workshop here the model input will be PWM duty

cycle and the output will be motor speed.

To acquire the data first a test model will be build. HANtune’s logging function will be used to acquire the

data. The resulting log file (csv format) is then imported in Matlab with the uiimport command. From this

imported data the model will be estimated using the System Identification Toolbox. This chapter serves

only as an illustration on how to use the tools to come to a plant model, the plant model will not be used.

5.1 Making the test setup

First a HANcoder test model is needed to generate the desired data. The output is controlled by a

HANtune parameter, the output of this

parameter is given a name so it can be logged

in HANtune. The input is the encoder value, this

is read by using the Quadrature Encoder block.

This gives the position of the motor but the

speed is needed, a discrete derivative block is

used to obtain this. Both the position and speed

signals are given a name so they can be

logged in HANtune. Also the base sample time

is lowered to 1ms for faster logging.

The motor direction will not be changed during the tests, it is assumed that the behaviour is equal in both

directions. (This assumptions should be checked)

A HANtune layout needs to be made to facilitate testing. A Radio button editor can be used to quickly be

able to repeat the same step tests. Add a Radio button editor by

dragging the PwmDutyCycle parameter from the ASAP2 elements

sidebar into the layout and select Radio button editor. Right click on

one of the options to Modify the settings. Add 3 more options by

clicking the Add option button. Now we can give each option a

value and a description.

Next we need a way to see what the system is doing, a scope is probably the best way for this. Add a

Scope viewer by dragging the PWMdutyCycle into the layout and select scope viewer. Add the

MotorSpeed by dragging this signal into the Scope window. Press Ctrl+R to go into Resize and Move

mode and place the viewers in a convenient location.

Since the reaction of the electric motor is quite fast it wouldn’t make sense to log data at low frequencies,

the Base Sample Time of the model was already set to 1ms but HANtune by default only requests data

once in every 10 cycles. In our case this would mean it would sample at 100Hz or every 10ms. To increase

the frequency the Prescaler in the DAQ List Info window can be adapted. Set this value to 2 to log at

500Hz, faster isn’t possible because of the limited bandwidth over USB. See the next page for the

location of this setting.

Workshop Index, v0.5

Page 23

The first test is just giving the system a simple step input to look at the response of the system.

Unfortunately because of the difference in magnitude between the PWMdutyCycle and the MotorSpeed it

is difficult to see when the input was given. To fix this you can is multiply the PWMdutyCycle in the Simulink

model by 1000 so it becomes clearly visible on the scope in HANtune.

This isn’t strictly necessary. The following Scope image can be obtained when giving a step input to the

electric motor.

Index, v0.5

Page 24

This first test shows a step response of a second order system. It is evident from this graph that the second

order is relatively small compared to the first order. Also there seems to be a lot of noise on the signal.

This is probably because a derivative is used to determine the speed and there is a little noise on the

encoder value. To check this assumption the same test is performed and a graph of the encoder value is

created.

It turns out that on the encoder value there is also some noise, this is the source for the noise on the motor

speed. At the moment it is unclear where this disturbance is coming from and it will be ignored for now.

When the Radio button editor is used with the settings recommended above, the step from 0 to 25%

causes the motor speed to increase to 90.000 (encoder pulses per second) The step from 25% to 50%

only causes an increase in speed of 5000. It’s clear that the motor is highly non-linear at the higher

speeds. To keep the modeling simple only inputs up to 30% will be used. In

this part the motor is still fairly linear and thus easy to model. The Radio

button editor should reconfigured to make the following steps: 10%,

15%,20% and 30%. Right click on one of the options to reconfigure the

settings.

5.2 Logging data with HANtune

The controller is reset to and HANtune is reconnected to reset all values to zero. Logging is now started by

clicking the Logfile bar on the bottom of HANtune. The Logfile bar is green when logging is enabled. The

name of the Logfile is showed in the same bar.

When logging has started it is time to give the system a number of input steps. This can now easily be

done with the RadioButton editor. In this example the following step sequence is used:

Workshop Index, v0.5

Page 25

Input: [0, 10%, 0, 10%, 0, 10%, 0, 15%, 0, 15%, 0, 15%, 0, 20%, 0, 20%, 0, 20%, 0, 30%, 0, 30%, 0,

30%]

Between each change is approximately 2 seconds, this is because the fall time of the system is

approximately 1.2 seconds. After the sequence is done, press the Logfile bar again to stop logging.

5.3 Reading the data in Matlab

Now it is time to read the data from the logfile. For this Matlab has the convenient data import wizard: in

the Matlab command window type: uiimport Choose File and select the csv file that HANtune has created.

The name of this file begins with the HANtune project name (newProject if the project hasn’t been saved

yet) and ends in the date and time. For example: ProjectName20161206_194551.csv

When the file is opened select Semicolon at the Column delimiters field and set the Variable Names

Row to 6. Next select the data, easiest is to select the first row and then press Ctrl+Shift+End.

Next click on the Import Selection button and the Data will automatically be added to your workspace. If

the variable names already exist in the workspace the wizard will add a number to the end.

Index, v0.5

Page 26

5.4 Using the System Identification Toolbox

With the system identification toolbox from Matlab it is possible to estimate a model from just the input

and output data. Type: ident in the command window to start the System Identification tool. (If the warning:

Undefined function or variable 'ident’. shows, the toolbox might not be installed)

Next select the data by clicking on the pull-down menu in the upper left corner and selecting Time

Domain Data… A dialog appears where the input and output variables can be chosen. Select the

PWMdutyCycle as input and the MotorSpeed as output. Click import to send the data to the System

Identification Tool. When the data is imported successfully the Import Data window can be closed again.

Workshop Index, v0.5

Page 27

From the imported data the model can be estimated. Click on the drop down menu and select Transfer

Function Models…

A dialog appears where the numbers of poles and zeros can be

chosen. Choose 1 pole and no zeros, although this is wrong the

motor will be modeled as a first order system.

Click on estimate to start the estimation process. The time it takes

will depend on the data points and the order of the system.

Once the estimation process is finished it will show

the fit to estimation percentage. This percentage

tells how close the models comes to the input

output data. In this example 81% is achieved. The

noise that was on the output signal could be a

possible cause for the poor result. The tool has

options to filter the data prior to model

estimation. This should be enough to make a

decent controller. If the controller requirements,

like overshoot and rise time, are though it is

necessary to get a better model. The progress

report can now be closed.

To check the transfer function simply double click

on the result in the System Identification Tool. See

next page

Index, v0.5

Page 28

This transfer function can be used in a plant model. Be aware that this

is the input output relation from duty cycle to motor speed instead of

from duty cycle to motor position [encoderpulses].

Workshop Index, v0.5

Page 29

APPENDIX 1: MODEL SETTINGS FOR MODEL REFERENCE

Although in this workshop the HANcoder_Olimexino_Controller.slx is already prepared for use as a

referenced model, the settings that are changed are shown in this section so users can make the changes to

their own models if model referencing is needed.

All the variables in the workspace can be ‘accessed’ by all referenced models used by Simulink. This

means that if a model would be referenced twice the variable used by this model would be read/written

twice. This could give serious data integrity problems. To prevent this Matlab forces the user to set the

maximum number of instances allowed to 1. An error will show when the referenced model uses global

variables (in the base workspace) and the maximum number of allowed instances is set to ‘Multiple’. The

setting can be changed in Configuration Parameters --> Model Referencing

If multiple instances of the model are used the model workspace instead of the base workspace should be

used. This workshop will not treat this subject any further.

The next setting that needed to be changed was the way Simulink initializes the initial conditions for

conditionally executed subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time Integrator

blocks. The default setting is ‘Classic’, this mainly ensures compatibility with older models, the setting needs

to be changed to ‘Simplified’ in order to make model referencing work. Future versions of HANcoder will

have the correct setting by default.

Index, v0.5

Page 30

The last error that can occur is an error about signal logging. Matlab upgraded the way it logs signals

and the HANcoder models have not yet been upgraded to ensure backwards compatibility. When running

the system an error shows in the diagnostics window. To solve the error simply choose the option to update

all models referenced directly or indirectly by the top model.

