Hogeschool

HANcoder

advanced
workshop

van Arnhem en Nijmegen

7\//6{2;28156 HANcoder advanced workshop

A guide to use model referencing, variants and HANcoder in

order to use the advantages of model based design.

Workshop Index, v0.5

Index

HANCODER ADVANCED WORKSHOP

Contents
T INTRODUCTIONcciiiiiiiiiiiiiinnnnnnnnnnnsnensnssesssssesss 2
2 HARDWARE.....cciiiiiiiiiiiiiiiiiiiiiiininininiineinisisisisisssisiss 3
3 SIMULINK MODEL.....cciiiiiiiiisiss 3
BT Plant MOdel ittt sttt sttt st sse st s 4
3.2 Adding 0 MOdel rEfEreNCe ...cueuiceereeceeeecieeeseneeseeseeseeseeseessesseessesseesasssessasssessesssessessasssens 4
3.3 Controller MOEl.. ittt sssstssssssssssssssssssassnens 6
3i4 Variant SUDSYSTEMS...ucuiiiiiiiiiininnceenntntetitsssssssacssssssssssssstssssssssssssssssssssestssssssssssssssssssssssses 7
3.1.4 The code generation VOGN ... iiiicnincnnnnienstiisessessssssssessssssstssssssssessssssssssens 7
3.2.4 The Direct Feedthrough variantiiccinccnniiiininincncacsnsnsesestscsssssesssssesssssnns 7
3.304 VArONT CONTPOL curicuierrrrirerrerreeensesaecassasssesessessessessessssnssssssssssssssessessssssssssassssssesesssssesssssssassnsss 8
3.4.4 Creating a VAriant SUDSYSTEMciuiririiireninniniinnisiiseisiiisesississsssessssssstssessessessessesssssens 9
3.5.4 Adding an eXira VAMGON ... ccicncenctncenisssissssesesssssssssssssstssessssssssnssssssssssens 10
3.5 Creating O DUS..uccciicciiecnncnntinestiseeesesasenssssssssssssssssssssssssssssnsosssssssssssssssssssssssnssssnssssssosssses 12
3.6 Defining iNPUS ANA OUIPULS c.eeieriiieiiccieniennsnssrnstsssssesseessssseassssssssssssssssssssssssensssssssssssssssses 13
3.7 Connecting the controller MOAel... .. uiieieerieriereeeiereeceerteseeseesreereeseesseeseeseeseessesseesaessessaens 15
3.8 SIMUlOtiNG ANA TUNINQG weevieieeieieteeieeerreetenreeeeseesseeseesseeseessesseessesssessessesssessesssessessasssasseessans 15
4 TESTING THE COMPLETED CONTROLLER.......cccccceriiiierirmmmmneessnenreesnnneessssssseessnseessssns 16
4.1 Creating 0 HANIUNE [QOYOUL ...cccuicirceeceeerreeeereecenseesaessessasssessassssssessassseasasssessassssssassassseasees 16
4.2 Connect 10 the OlIMEXINO ... iirnininririniinsiinsiiniiseisiisseissesiseisesesssssssssssscsss 19
4.3 Test the CONTIOIIET cauceerceieerceecerrerceerrereteerseeeerseseseeseesasesessasasessassssssessassseasassssssassssssessassseasens 21
5 CREATING THE PLANT MODEL.......ccccooiiiiiiiiiiiiiiniininiss 22
5.1 Making the test SETUP .eeciiiriciniertitiintstscsneeentstsssstsssssssssassssstsssssssssssssssssssssssssssssones 22
5.2 Logging data With HANIUNEceiviiiiiiniiiintctntntncntcsnseensestssssssssssssesssssssssssssssnes 24
5.3 Reading the data in Matlab.....iiiicinneenes 25
5.4 Using the System Identification TOOIBOX ..ccecceeveeervccircniricntiennenctrcctnctseeseeeeeeeaeaens 26
APPENDIX 1: MODEL SETTINGS FOR MODEL REFERENCE................ccccceeveererreereeeeeeeneeennnes 29

Page 1

Index, v0.5

1 INTRODUCTION

This document describes how to do simulations in Simulink of the hardware in combination with the a
controller made with the HANcoder toolbox. By using this approach it will be possible to quickly test the
controller in simulations. This is especially valuable when the hardware is not available of unsafe situations
can occur.

The system to be controlled is a simple DC-motor. The objective is to use a model of the DC motor in
Simulink in combination with a controller using the HANcoder blocks. The controller can be tuned and
tested in Simulink before checking the results on the real system.

If you are not familiar with the HANcoder tools and the workflow it is advised to first read the Getting
Started document and then do the ‘basic’ workshop.

The following subjects will be treated in the workshop: Model referencing, variant subsystems, Simulink
busses, logging in HANtune, data import in Matlab and System Identification with Matlab.

Page 2

Workshop Index, v0.5

2 HARDWARE

For this workshop an Olimexino will be used. On top of the Olimexino board a shield is added with a
motor driver or H-bridge, the Ardumoto. A signal on pin D3 controls the duty cycle to the motor and a
digital signal on pin D12 controls the direction. A small DC motor with an encoder connected to the shaft
on one side and a gearbox on the other side is connected to the H-bridge. The encoder is connected to
pins D6 and D7 and gives around 14000 pulses per rotation of the output shaft. Next to that there is a
potentiometer attached to the Olimexino on pin A3. The potentiometer will serve as a set point for the
motor speed. The further the potentiometer is turned the faster the motor should turn. This very simple
system was also used in the ‘basic’ workshop.

3 SIMULINK MODEL

The model which will be used for the workshop is missing certain parts. The idea is that you will have to
make the model work and by doing so all important steps to enable simulation and code generation will
be treated. The resulting model will allow the user to check the controller performance both in Simulink as
in the real world.

The first step is to open the prepared model by double clicking the ‘Top_Model.sIx’ model file, located in
the folder HANcoder_STM32Target\Target:

Simple Speed Control for a DC Motor

Reference r(t) System Input u(t) System Output y(t)
O DCmetorTransfesFunction O
E:\.ennpm FMReErem:E - =
tep Dsta Type Conversion + direction "
'3 FWM + direct T —— r;l

O Plant mods! O

Feedback loop

Page 3

Index, v0.5

In the base model you can see a subsystem called Plant model. This is not an ordinary subsystem but a
model reference. This means a model can act as a subsystem in another model. A model reference can be
recognized by the triangles in the corners of the block.

In this case the Plant model subsystem is a reference to a model called DCmotorTransferFunction.slx.
Please double click on this model reference to view its contents.

3.1 Plant model

-

YV

Input
Input
Speed postion oPeed
Postion
double
o dolbe 3185 |cowe 7| douvke inta
TS +D—b—\mme > L int32 (1)
R s
—=0 —V'o/c_ s+4.55 Position[counts]
bookean —= Manual Switch Transfer Fcn Integrator Data Type Conversion

PWM + direction Switch

<Direction>

double

The model is opened in a new screen. The heart of the model is a transfer function which represents the
input to output relation. The transfer function is the relation between the PWM duty cycle and the speed of
the motor (without load). An integrator is added because in the real system not the speed but the position
is measured. This (black box) model of the electric motor is heavily simplified and is only valid for duty
cycles under the 30%. This is to keep this workshop as simple as possible and keep the focus on the
workflow.

With a manual switch you can choose the input to the transfer function: either a step or an input coming
from another switch. Double clicking the manual switch changes the input to the transfer function to the
step input. After running the model the speed and position response on the step input can be inspected
using the scope. (running this model will only be possible after finishing this workshop)

The other input of the manual switch depends on the signals Ploutput and Direction, if Direction is true the
input to the transfer function is Ploutput and if Direction is false it is minus Ploutput. This represents the
control of the H-bridge as described in the introduction.

The signals Ploutput and Direction are coming from a bus selector. A bus in Simulink is equivalent to a
structure in C, in different words it is a bundle of different signals. With the bus selector it is possible to
extract the signals from the bus. More about buses will follow later in this workshop.

Please set the manual switch to the bottom position and close the DCmotorTransferFunction.slx.

3.2 Adding a model reference

Now we will add a model reference subsystem in the base model. This referenced model will contain the
control algorithm and the HANcoder blocks to automatically generate code.

Go to the library browser and go to Simulink/Ports & Subsystems. Next, choose the block ‘Model’ and
place the block in the model left of plant model.

Page 4

Workshop Index, v0.5

Simple Speed Control for a DC Motor

Reference r(t) System Input u(t)

Filt Filt
Convert
Driverinput Rekrence

Step Data Type Conversicn 3 Unspecified Model Name

Model

Feedback loop

DCmotorTransferFunction

PWM + direction

System Output y(t)

Flant model

MotorPositon

-

Double click on the newly added block to choose the model it should reference to. Using the browse button

navigate to the model ‘HANcoder_QOlimexino_Controller.slx’. Click OK. The name of the model now

appears in the model reference subsystem. Resize the block so the name becomes readable.

Simple Speed Control for a DC Motor

Reference r(t) System Input u(t)

HANcader_Olimexino_Contraller

] -
Driverinput Retrence

Step Data Type Conversion b

Model

Feedback loop

3

DCmotorTransferFunction

System Output y(t)

PWM + direction

Plant model

MotorPosifion

We now have two subsystems which are a link to other models, the HANcoder_QOlimexino_Controller.slx

and the DCmotorTransferFunction.slx.

Double click on the HANcoder_Olimexino_Controller subsystem to go into the controller model, this will

bring you to the start screen of the HANcoder model.

Page 5

Index, v0.5

3.3 Controller model

Hogeschool van Arnhem en Nijmegen

HAN University of Applied Sciences

HANcoder STM32 Target - Olimexino-STM32 algorithm

End-User License Agreement
please read before use

Read more on HANcoder

Double click on the picture of the Olimexino to enter the algorithm. The model exists out of some system
settings blocks which are grey, a subsystem for the inputs, a subsystem for the actual control algorithm and
lastly a subsystem for the outputs. The separation of inputs and outputs has a purpose. If there is a new
version of the HANcoder blockset or if the user wants to switch from the Olimexino to the Rexroth, the
control subsystem can be copied into the new model and only the input and output subsystems have to be

remade.
Desi - | Desired[-]
DesredSpead
»lc O
‘ControllerOutput]] ControlerOutpit > stput
e [ouput|———— ()
Input Cutput
Bartton
Inputs Control Cutputs

Go into the Control subsystem. There are two separate control algorithms here. The top one controls the
motor speed with a Pl controller. The input for the controller is the difference called error between the
desired speed also called the reference, and the measured speed.

The other algorithm controls the speed of the LED by switching when the button is pressed.

Page 6

Workshop Index, v0.5

Now go back and take a look in the Inputs subsystem. In the Inputs subsystem there are three inputs: the
first two are the Reference, from the potentiometer, and the MotorPosition from the encoder. These inputs
are the ones needed for the motor control. The third input is the button for switching between the LED
frequencies.

3.4 Variant subsystems

The DesiredSpeed comes from another special kind of subsystem, a variant

Direct Feedth: h uble . . .
— ot Output e subsystem named Driver Input. A variant subsystem can be recognized by the
| — two squares in the lower left corner. Inside this subsystem there are again two
put
/ other subsystems. One is called Code Generation and the other one Direct

Feedthrough. Only one of these two subsystems is active while the other one is inactive or ‘commented
out’. Blocks that are commented out are faded out / lighter.
1) Only subsystems can be added as variant choices at this level

2) Blooks cannot be connected at this level as connectivity is
automatically determined at simulation, based on the active variant

4
Input Cutput
Direct Feedthrough

3-1 Inside the Driver Input variant subsystem

The currently active variant is Direct Feedthrough. At this moment it can be seen that the Direct
Feedthrough is active, this is also displayed on the parent block Driver Input.

What is remarkable is that the input and output blocks don’t seem to be connected to the subsystems. The
connections between in- and outputs will be automatically resolved by Simulink.

3.1.4 The code generation variant

) =l D

3-2 The code generation variant

Inside the Code Generation subsystem the above blocks can be found. The Code Generation subsystem
will be used when generating code for the Olimexino. The HANcoder block for reading the voltage of the
potentiometer is located in this block. The input to this subsystem comes from the Top Model and is only
useful during simulation, it can be neglected when generating code. Terminating the signal is used to
prevent warnings from Simulink about unconnected blocks.

3.2.4 The Direct Feedthrough variant

The other subsystem is the Direct Feedthrough variant. In this subsystem the output is directly connected to
the input. When running a simulation this means that the signal

from the Top Model is directly routed into the controller. The @mﬂa =_|1 double NGD)

signal from the Top Model should have the same Input i Output
Fain to separate the

characteristics as the value from the measurement in the Code names of the signals

Page 7

Index, v0.5

Generation block.

3.3.4 Variant control

Simulink uses Simulink.Variant objects to determine which subsystem is active, these are defined in the
workspace. Please go back to the screen where you can see the Variant Subsystem Driver Input. Now

right click on the Driver Input variant subsystem and choose Block Parameters (Subsystem). The following
screen will appear:

Variant Subsystem

The variant subsystem block can have one active variant for simulation. The variant control
determines which variant is active. It can be a condition expression, a Simulink.Variant object
specifying a condition expression or a default variant.

Variant choices (list of child subsystems)

Name (read-only) Variant control Condition (read-only)
Code Generation VCcodeGeneration ¥ VCvariant ==
Direct Feedthrough VCdirectFeedthrough ¥ \/Cvariant ==

BEEE

["] Override variant conditions and use the following variant ~ Code generation

Variant: |VCcodeGeneration (Code Generation) - [[] Generate preprocessor conditionals

Open block in Variant Manager

Q oK || cancel || Help Apply

Here the variant control can be defined. Each subsystem is controlled with a Simulink.Variant object,
specified in the second column. When the condition of these Variant controls are met the Variant
Subsystem is activated. Press cancel to close this screen.

Next we will set up a variant control for one of the outputs. Please navigate to the Outputs subsystem.

are |0
D"

— Desired[-]
zonfig

ControllerO utput

Measured[-]

WeasuredSpeed

Button

Control

Page 8

Workshop Index, v0.5

3.4.4 Creating a variant subsystem

As mentioned before the direction can be controlled by toggling pin D12. The current model can only
control the speed of the motor in one direction. If the motor should also be able to turn backwards it
makes sense to implement this in the controller model. For this a new variant subsystem will be made. Go
to the library browser and from Simulink /Ports & Subsystems choose the Variant Subsystem block.

™ Simulink Library Browser Elglﬂ—hJ

File Edit View Help
. T3 » Entersearchterm ~ §§ &4

Libraries Library: Simulink/Ports & Subsystems Search Rest 4 | »
4 Simulink pl = LRy RLE — 7 wuwayoimin

Cummonly Used Blocks Function-Call Function-Call
Cpntlnupug) Feedback La._. 0 p Generator
Discontinuities
Discrete - -

Logic and Bit Operations @ ;:ﬂftmn Call gﬂgz;ns?e?nau
Lookup Tables =

Math Operations
Model Verification
Model-Wide Utilities
Ports & Subsystems
Signal Attributes
Signal Routing

Sinks

Sources e Model Variants >° Qut1
User-Defined Functions N -

Additional Math & Discrete

it If Action
| Subsystem

r In1 Model

111

> |Pa| Computer Vision System Toolbox - Subsystem Sutssem | Subsystem i
*&| Control System Toolbox - Sameles | Examples =l |
| [*a Data Acquisition Toolbox Suiteh G |
> [’a) Embedded Coder ; _ witch Case
. %l HDL Coder Switch Case a1 “1P A ction Subsy '
E Image Acquisition Toolbox T]
*&| Instrument Control Toolbox Trigger - riggere
*&) Model Predictive Contral Toolbox d: 99 H Subsystem
» |P8] SimEvents
» |*a| Simscape - Variant - While Iterator
I » |Pa| Simulink 3D Animation - Subsystem m Subsystem
» ["al Simulink Coder v
4 111 3 4] 3

Showing: Simulink/Ports & Subsystems

Put the block under the Controller Output subsystem and name it Direction.

The direction pin should toggle when the output of the controller is less than 0. So from the library Simulink
—Logic and Bit Operations take the Compare To Zero block. Connect the input to the block with the
controller output, before the absolute block. Double click the block and select the smaller than sign, <. The
output of the Compare To Zero block serves as the input to the new Variant Subsystem ‘Direction’.

Direct Feedthrough
» |u Convert » 7{5] Input Ouwrtput pb————

lul M |_I—_|_l|:I E Ploutput
Abs % to bitvalus Data Type Comversionl Satur ation Controller Output

» <0 It Ourt1

Compare Iﬁ = -

Direct
ToZeo rection

3-3 New Variant subsystem added

Now go into the Variant Subsystem, Direction, and add two ‘normal’ subsystems from the library Simulink

— Ports & Subsystems. Name the first one Code Generation and the second one Direct Feedthrough.

Page 9

Index, v0.5

Open the Code Generation subsystem and add a Digital Output
= o block from the library HANcoder STM32 Target—Olimexino STM32
—Digital Outputs. Connect the input to the Digital Output block. Set
the Digital Output to the correct pin by double clicking it and
choosing pin D12 from the pull-down menu. Take a Ground block
from the Library Simulink—Sources and connect it to the output block.

This is again to prevent Simulink warnings during code generation. The Code Generation subsystem is now
ready.

The other subsystem, Direct Feedthrough, is already done since the standard setup in Simulink is to connect
the input directly to the output, just as we want in our model.

Now the variant subsystem still needs to know under which conditions to use which variant. Go up to the
level where you can see the base block for the variant subsystem, Direction. Right-click on the block and
select Block Parameters (Subsystem). The same screen as before appears. Now type the correct
Simulink.Variant object at the subsystem; VCcodeGeneration for the Code Generation and

VCdirectFeedthrough for the direct feedthrough. If the Variant control was recognized the condition will
be automatically updated. Click OK when done.

r

. — -
& Function Block Parameters: Direction ﬁ

Variant Subsystem

The variant subsystem block can have one active variant for simulation. The variant control
determines which variant is active. It can be a condition expression, a Simulink.Variant object
specifying a condition expression or a default variant.

Variant choices (list of child subsystems)

@ Name (read-only) Variant control Condition (read-only)
\Z/ Code Generation VCcodeGeneration ~ VCvariant ==

\g/ Direct Feedthrough VCdirectFeedthrough vé\.v’C\arariant ==

=

Override variant conditions and use the following variant ~ Code generation

Variant: |VCcodeGeneration (Code Generation) Generate preprocessor conditionals

Open block in Variant Manager

Q9 ok || cancel || Help || Apply |

L

To test if it all works correctly change the condition for the variants by typing ‘VCvariant = O’ in the
command window. The block should update its text and when you enter the block the Code Generation
subsystem should be activated. (the text will be updated when the model window is active)

3.5.4 Adding an extra variant

When you have a (white box) model of a physical system and the outputs of this plant model are in
physical units like Nm or Watts you can choose to add a model of the sensor/actuator in another variant.
Let’s add an extra variant to the model as an exercise. Go into the variant subsystem ‘Direction’ and add
another subsystem, give it the name Electrical Simulation. Leave the contents unchanged.

Page 10

Workshop Index, v0.5

1) Only subsystemns can be added as variant choices at this level
2} Blodks cannot be connected at this level as connectivity is
sutomatically determined at simulation, based on the active variant

In1 Cutl
Code Generation

t_)

The condition when this variant should be used is not defined yet, this is done by creating a
Simulink.Variant object by typing: ‘VCelectricalSimulation = Simulink.Variant;’ in the command window.
Now the condition can be set by double clicking on the newly created Simulink Variant object in the

workspace:

& Simulink.Variant: VCelectricalSimulation ﬁ

Simulink.Variant

The Simulink.Variant object is defined in the base workspace or
data dictionary and used in association with Model Reference
Variants or Variant Subsystems.

The Condition field should be a logical expression evaluating to
true or false to determine if the object is active or not. For
example:

A ==

Condition: VCvariant ==

OK || Cancel || Help || Apply

%

Type ‘VCvariant == 2’ in the window and click OK. Now go back to the model and open the Block
Parameters (Subsystem) window again. (right click on the Variant Subsystem ‘Direction’). In the second
column behind Electrical Simulation type the new Simulink Variant object: VCelectricalSimulation. The new

condition should automatically be shown. Press OK to close the window.

Test the new variant by setting VCvariant to 2 (type VCvariant =2; in the command window).

Set the VCvariant back to 1 to enable the direct feedthrough. (Note: the actual Actuator model was not

made)

Page 11

Index, v0.5

3.5 Creating a bus

The Direction variant was successfully created, next the output from the Direction block needs to be routed.
For this we will use a Simulink bus.

In this model it isn’t really necessary because not many

Diredt Feedtrough signals are used but in larger, more complex models, buses

| loe R = o will really help with keeping the model readable and
— N
Controller Cutput Qutput maintainable. To create a bus use the Bus Creator from the
Simulink— Signal Routing library. Disconnect the Ploutput

Direct Feedthrough signal from the Output block and connect it to the first input

_"% O [Dision of the bus creator. Connect the output of the Direction
Direction subsystem to the second input of the bus creator. Give this

signal a name by double clicking it and typing ‘Direction’.
The line will turn bleu when the signal is selected. The output of the bus creator can now be connected to
the Output block.

The bus that has been created is only known in the controller model. This bus will be used as an output to
the Top Model. In the Top Model it is not known which signals are in the bus and Simulink will not know
how to deal with this bus. To solve this a Simulink.Bus can be created. This is a definition or description of
the bus so that all blocks and models which use this bus will know exactly what the bus contains. To create
this bus a tool can be used from Matlab, start the tool by typing ‘buseditor’ in the command window. The
Bus Editor is now started.

— — 5
= Bus Editor - Manage Bus Objects in the Base Workspace E=AIE ﬁ
- —
File Edit View Options Help
22 & % 52 X Filter:| by Bus Name - w Clear Filter
Name DataScope HeaderFile 4 Base Workspace
4 |1 Base Workspace _
. = ContrallerinputBus = ControllerInputBus Auto
The Simulink Bus Editor provides a graphical interface
for managing bus objects. A bus object is an instance of
the class Simulink.Bus. You can use a bus object to
specify the properties of a bus signal.
Revert Help Apply
4 1 [3
Ready
L —

To create a new bus in the Base Workspace click the add bus button, = , in the toolbar. Now in the right
side of the window give the bus the name: ControllerOutputBus. Click Apply to confirm. Now the signals

can be added to the bus, in a bus these are called bus elements. Click the add element button, ™= . Give
the element the name Ploutput, change the data type to uvint16é and click apply. Now add a Direction
element to the same bus and set the data type to Boolean. Click apply before exiting the bus editor.

To use the defined bus go to the bus creator in Simulink and double click it. Select the ControllerOutputBus
from the drop down menu as Output data type. See below:

Page 12

Workshop Index, v0.5

- -_
\

"& Function Block Parameters: Bus Creator E

BusCreator

Parameters

This block creates a bus signal from its inputs.

Inherit bus signal names from input ports

Number of inputs: 2

Filter by name

& Find

Signals in the bus

Ploutput
Direction

Refresh

Up

Down

Remove

Rename selected signal:

Output data type: Bus: ControllerQutputBus -

|| Output as nonvirtual bus

9

OK

Cancel || Help | Apply

3.6 Defining inputs and outputs
To enable interaction between the controller model and the top model some in- and outputs are needed.
These need to be defined at the highest level of the controller model, this is the level where the picture of

the Olimexino is visible. Go there by clicking the & or by clicking HANcoder_Olimexino_Controller in the

bar above the model.

Page 13

Index, v0.5

Outputs

®

[*a|HAMcoder_olimexino_Controller ¥ [Pa|HANcoder STM32 Target - Olimexino-STM32 algorithm ¥ [Pa| Outputs »

ConfrollerCutput

B E U E e

ToZaro

Code &
C)1 » lul W Convert » 7{5 » Input
A % o bitvalle Data Type Conversiont Satur stion Controll
Code Gi
» <0 P Ind
Compare

Add and connect an input on the left side of the model and an output at the right side. The input block can
be found at the Simulink->Sources library and the output at the Simulink->Sinks library. Because these in-
and outputs are connected to the top model the data types must be defined. Double click both blocks and
change the data type in the Signal Attributes tab to ControllerlnputBus for the input and

ControllerOutputBus for the output.

Hogeschool

In1

HANcoder STM32 Target - Olimexino-STM32 algorithm

van Arnhem en Nijmegen
HAN University of Applied Sciences

E

Out1

Run the model to check if there are no errors. The lines to the input and output now get thicker, this

indicates that this line represents a bus.
Save the model and go back to the top model.

Page 14

Workshop Index, v0.5

3.7 Connecting the controller model

In the Top Model the input and output have now been added to the model reference of the controller
model. These can’t be directly connected to the reference input and the plant model because the sample
times are different. The controller works with time steps, it samples its inputs and updates its outputs at a
certain frequency. The controller is a digital or discrete system. The plant model and reference represent
the real world and they are therefore simulated using continuous time, it is an analog or continuous system.
To solve the difference use the Rate Transition block from the Simulink— Signal Attributes library. Place
one of these blocks at the input and one at the output of the controller model. Now connect all lines and
run the model. Simulink now automatically determines how to deal with each rate transfer.

Simple Speed Control for a DC Motor

Reference r(t) System Input u(t) System Output y(t)
HANcoder_Olimexino_Controller_WS DCmotorTransferFunction
Refrence i |——| & | N
Step Data Type Conversion m;:'m = In1 Py L u]mFlu]m o PIWM + direction Uor’:ompﬁiw o |:||
» Rate Trans fion Rate Trans tiont Scope
Mode! Flant model

Feedback loop

Note: Getting a default HANcoder model to operate as referenced model requires changing 3 settings. These are
already adapted in the prepared model for this workshop, to see which settings are needed to be changed please
refer to Appendix 1: Model settings for model reference

3.8 Simulating and tuning

The model is now ready for simulation. Please press the Run button in the Top Model. Check to see if the
model ran correctly by checking the Scope showing the MotorPosition. If the model didn’t seem to run
check if VCvariant is set to 1.

Now try to find values for the proportional and integral parts of the Pl controller that result in a stable
and fast step response without too much overshoot. Pay attention that the Kp and Ki parameters are
Simulink.Parameters so you can’t simply type Kp = 0.4; Instead to change the value either use the dialog
that appears when you double-click the name in the workspace or type: Kp.Value = 1;

The results of the simulation can be seen on the Scope located inside the Plant model. Note that the speed
is indicated in pulses per second and because the encoder gives around 14000 pulses per revolution the
values for the speed get very high.

Once the values for Kp and Ki are found it is time to move on to test the controller in the real world.

Page 15

Index, v0.5

4 TESTING THE COMPLETED CONTROLLER

To generate code for the Olimexino first the variant subsystems should be set to Code Generation. Type:
VCvariant = 0; in the Matlab command window. This will switch the variant subsystems to Code
Generation. Now the controller model can be build by pressing the incremental build button, l—J, or by
pressing Ctrl+B in the HANcoder_Olimexino_Controller window. When the build process is successfully
completed the program can be flashed onto the Olimexino in the usual way using MicroBoot. (MicroBoot
will be started automatically)

Test if the program works by turning the potentiometer. If the motor starts oscillation turn the potentiometer
back to the zero position and reset the controller. These oscillations occur when an instable controller is
used.

4.1 Creating a HANtune layout

To see what is happening inside the controller HANtune will be used. To connect to the Olimexino with
HANTtune, the ASAP2 file (.a2l) has to be loaded in HANtune. To do this, start-up HANtune and right click
on ASAP2 files. Click add ASAP2 file and search for the .a2l file in the target directory of HANcoder.

4P HANtune version 2.0 Alpha Non-commercial - NewProject - O X

File Communication Window Preferences Help

Project Data

HANcoder_Olimexino_Controller_ert_rtw

4P HANtune version 2.0 Alpha Non-commercial - ASAP? file x
= Look jn: Target v F e
1)} DA lsts
5 /s Leyouts 2 blockset
])} Calibrations &=
T =t bootloader
g Recent kems
g
&

.
- .HANcoder_OIin1exino_ControIIer.alI I

ASAPZ elemerts

This PC
g l‘* File name: HAMNcoder_Olimexine_Controller.a2|
= Network s of type: |a2l files(.a2l) > S
3
Connected: OFF Errors: OFF 0% Max: 10... Logfile: OFF

After the ASAP2 file is loaded, it appears in the ASAP2 folder. Double click
HANcoder_Olimexino_Controller.a2l to load all signals and parameters from the a2l file. When it is
loaded, the name will turn bold. After the program is loaded, a layout must be added. To add a layout,
right click layouts and click on New Layout. HANtune will ask to name the Layout, name the Layout
Controller Layout and click on OK.

4P HANtune version 2.0 Alpha Non-commercial - NewProject - O X

File Communication Window Preferences Help

Project Data <
[NewProject
(-1 ASAP2 files

[=-J HANcoder_olimexino_Controller.

[} DBC files
B DAQists New layout >

=& D1 - Default
‘a Name:

Project data

Controller Layout|
Layouts
o Cancel
£
H
£
5
T
o
o
%
5
2
i
£
5
T
=
Z
3
< >

0% wax: 10... | [

Workshop Index, v0.5

The layout is now added to the layouts folder. To load the layout, double click on Controller Layout.
When the layout is loaded, the name will turn bold.

To add editors and viewers to the layout, click on the ASAP2 elements tab on the left of the window. In
here the signals and parameters are shown.

4 HANtune version 2.0 Alpha Non-commercial - NewProject
File Communication Window Preferences Help

AsAP2 File e Cantroller Layout
Depth 0 > Al v
=} Hahicoder_Olimexine_Cantroller.22 (1}
Parameters (5)

=] InputyHAtune

] InpitGain

) InputSwatich

Clki

Froject data

Elxp

= Signals (11)
] Analoginputad
= b

& ControllerOutput
] DesiredSpeed
= Encodervalue
= Error

=] MeasuredSpeed
& MotorPosition
& s1_cPuload

= s_FreeHeap
& SI_Freestack

A slemerts

< >
DA Uit tnko ¥
D Name Presc.. Freq.. Actve
D1 |Default 10 10HZ ||

DAQ Lists ¥
Signals o1

Analoginputa3
Bution

Add the InputByHANtune parameter by dragging it into the layout. HANtune will ask what kind of editor
is desired. Click on RadioButtonEditor. When this editor is added to the dashboard, it first has to be given
the right settings. To do this right-click on option 1 in the editor. Go to Modify options and name option 1:
Zero Input with value is 0. Name option 2: Final Value. This value must be the same as the step block in the
top model (35000) so the response from the simulation can be compared with that from the real world.

4F HANtune version 2.0 Alpha Non-commercial - NewProject
File Communication Window Preferences Help
ASAP?2 File —= <«|| Controller Layout

Depth 0 % |All ~
(ERHANcoder_Olimexino_Controller.a2! (16 |RUEESHENTHE () Zero Input.

[=] Parameters (5)

~[Z] TnputByHANtune () Final Value
~[=] InputGain
[Z] InputSwitch
Ki
~EKkp
- signals (11)
= AnalogInputa3

Project data

in;
w

E Button
& controlleroutput
- DesiredSpeed
[Encodervalue
B Error
- Measuredspeed
-] MotarPosition
[SL_CPuload
[E S1_FreeHeap
-~ SI_FreeStack

ASAPZ elements

CAN elements

e

4 Setopti. — O X

2| v

DAQ List Info
ID Name Fresc... Freq.. Active
D1 |Default | 10 10Hz | | Desciption Value
Zero Tnpu il

DAQ Lists v
Signals D1
AnaloginputA3
Button
ControllerQutput Option 3 o
esiredSpeed
;ncndarValua Option 4 0
Error
easuredSpeed
MotorPosition Option 5 0
SI_CPUload
51 FreeHeap Add option Remove option
SI_FreeStack

IFina\ Value 35000 I

oK Cancel

Search DAQ Lists Q)
0% Max: 10... = [[

Page 17

Index, v0.5

Add the InputSwitch parameter to the layout and make it a ButtonEditor. Modify the active and inactive
value by right-clicking the button = modify values. Set the active value to 1 and the inactive value to O.

Add the Ki parameter and Kp parameter to the layout by dragging them together into the layout and
choosing MultiEditor.

Now it is time to add the signals. Drag the signal MeasuredSpeed into the layout and make it a
ScopeViewer. Drag the signal DesiredSpeed into the ScopeViewer to add the signal. The ScopeViewer
has two important features for this workshop: the Auto scale feature and the Hold feature.

To drag, delete or scale an editor or viewer, use Ctrl+r.

Now the layout is finished:

() zero npat
10
() Final Value
Inacire
50
0.000000
as
000000 |
0
&
3
HIE >
oAQ it et ¥
D Mame Fresc. Freq.. Acie
01 Defauit w wow |v]
oAQLsts v
Signals o
nal :
5L Freetieap i5
SL_Fresstack
1o
- Hold (e 100 Ssec || Auoscale
[| [wax: 10... | [T [| [| S| o

Page 18

Workshop Index, v0.5

4.2 Connect to the Olimexino

After the layout is done, it is time to connect HANtune to the setup. This is done by clicking on The
Communication tab = connect, or by pressing F5.

<+ 0 Alpha Non-commercial - NewProject L3 0 Alpha Non-commercial - NewProject
Filgl Communication Window Preferences Help Filgl Communication fVindow Preferences Help

—_
“ASAP2 Fila -+ «c||_controller L avout ASAPZ File -« Controller Lovout
Depth| 0 < |All v Depth| 02 |All
=i HANcoder_olimexino_Controller.az! (16)| 4% Connect X =hHANcoder_Olimexino_Controller.a2| (16)| 4% Connect X
=) Parameters (5) . H— [Parameters (5) B B -
[=] InputBy ion type: XCP on USB/UART iv|| Settings putBy [@ i HCE on USB/UART v | settings
- [Z] nputGain 5 [=] InputGain B
k.1 [=] mputSwitch (@ Request parameters (Default) S b1 [Z] mputswitch (® Request parameters (Default)
g E E‘u O calibrate parameters g . ;‘ () Calibrate parameters
= Bsignals (11) [] Enable error manitaring = i
[E] Analoglnputa3 iicati i
=l Analoginp ee————— B 4» Communication Settings [XCP on USB/UART] X
[ControllerOutput - Initialize XCP session
P S{ocsircispeed] e . P General| CAN Ezhemmet [USH/UART] .
£ H encodervalue - Request event information g
£ E ;’gg;weds”eed - Request parameter values | I 2 Eoit | R o
- A I
g [MotorPosition o A g 115200 bps UART baudrate
g SI_CPUload % e | 0 O | Y e
~ E SLFrestesp | 120 < [#] connection via usa
H siFreestace 4
3« > =13 g <
Se: Q] Sedql
DAQ Lt Info Y 0 oA
D Name Presc... Freq.. Active us ol oK Cancel
D1 |Default 10| 10Hz |v] DIIH ; -
DAQ Lists ¥ 40 DAQ Lists v ‘ A0 e
Signals o1 Signals 01

To set up the connection, a few settings have to be adjusted. Set the Connection type on XCP on
USB/UART and click on settings.

To make sure that the right COMport is selected, go to the Windows device manager (in Dutch:
Apparaatbeheer) 2 Expand the Ports (COM & LPT) dropdown > the COMport is shown.

& Device Manager — o %

File Action View Help
e @ BEm B
v M DESKTOP-902370K B
i Audio inputs and outputs
& Batteries
ﬁ Bluetooth
B Computer
e Disk drives
Il Display adapters
= DVD/CD-ROM drives
B Firmware
g Human Interface Devices
== |DE ATA/ATAPI controllers
=% Imaging devices
Em Intel(R) Dynamic Platform and Thermal Framework
2 Keyboards

.1 Memory technology devices
[Mice and other pointing devices
[Monitors
il Nebworkadagters
v @ Ports (COM &LPT)
W STMicroelectronics Virtual COM Port (COM3)

—
[Processors

07 Security devices

| Software devices

i Sound, video and game controllers

& Srnrane rantrallerc

After the COMport is set, click on OK and then Connect & Request.

Page 19

Index, v0.5

To make the scope more precise, the DAQIist prescaler can be adjusted. Set the Prescaler to 2 by clicking
on the section and typing in 2. The model is run every 10ms, so at 100Hz. HANtune by default only
requests the signal values from the controller once every ten times the model is run. Changing the prescaler
to 2 will make HANtune request the signals every 2 cycles or at 50Hz.

4P HANtune version 2.0 Alpha Non-commercial - NewProject
File Communication Window Preferences Help

ASAP2 File —+ € | Controller Layout
Depth| 0 2 | All ~ =
—I"HAMcoder_Olimexino_Controller.a2l (16 | InputByHANtune 0 (@ zero Input

[} Parameters (5)
(2] InputByHANtune () Final value

-[Z] InputGain

-[Z] InputSwitch
Ki 0.003000=

- Ki

2] Kp

-Signals (11)

- AnalogInputA3
E Button

B Controlleroutput

M= DesiredSpeed
E Encodervalue

B8 Error

- MeasuredSpeed
E MotorPosition

-5 S1_cPuload

E SI_FreeHeap

-5 S1_FreeStack

Project data

m
0

Kp 0.000400—]

ASAPZ elements

< >
Search ASAPZ File Q
DAQ List Inf Y
ID Name || Prescaler Fle... Acti...
D1 |Default] 2 B H [v] |

DAQ Lists]
Signals D1
AnalogInputA3 [Tl

CAN elements

Page 20

Workshop Index, v0.5

4.3 Test the controller

When the InputSwitch parameter is set to 1 the setup can be tested and compared with the simulation. To
do this, switch the RadioButton from Zero Input to Final Value while connected. Press the Hold button to
stop the scope if desired. Example results for both real world test (left) and simulation (right) are shown
below:

Note: The results can differ from the simulation because of the first-order model that was used does not
adequately represent the reality.

Further tune the controller gains Kp and Ki until a satisfactory step response has been realised. If desired
you can switch back to controlling the motor speed with the potentiometer by pressing the ButtonEditor
which controls the InputSwitch.

Page 21

Index, v0.5

5 CREATING THE PLANT MODEL

In this part a simple linear model from the system will be made. Only the in- and output data is used to
construct this model. Instead of the model used in the workshop here the model input will be PWM duty
cycle and the output will be motor speed.

To acquire the data first a test model will be build. HANtune’s logging function will be used to acquire the
data. The resulting log file (csv format) is then imported in Matlab with the viimport command. From this
imported data the model will be estimated using the System Identification Toolbox. This chapter serves
only as an illustration on how to use the tools to come to a plant model, the plant model will not be used.

5.1 Making the test setup

First a HANcoder test model is needed to generate the desired data. The output is controlled by a
HANtune parameter, the output of this

o It parameter is given a name so it can be logged
TIM2 D2&D2&n/=4D0 o in HANtune. The input is the encoder value, this
R — is read by using the Quadrature Encoder block.

This gives the position of the motor but the
speed is needed, a discrete derivative block is

PwmDutyCydle PWM Set Duty Cycle
' Ly Py Oy » TIMZ-CONZ-D2 o used to obtain this. Both the position and speed
Constant P Dty Cyole signals are given a name so they can be

logged in HANtune. Also the base sample time
is lowered to 1ms for faster logging.

The motor direction will not be changed during the tests, it is assumed that the behaviour is equal in both
directions. (This assumptions should be checked)

A HANtune layout needs to be made to facilitate testing. A Radio button editor can be used to quickly be

able to repeat the same step tests. Add a Radio button editor by
PwmDutyCycle 0 @ Zero dragging the PwmDutyCycle parameter from the ASAP2 elements
Step 25% sidebar into the layout and select Radio button editor. Right click on
one of the options to Modify the settings. Add 3 more options by
Step 50% clicking the Add option button. Now we can give each option a
Step 75% value and a description.
Step 100%

Next we need a way to see what the system is doing, a scope is probably the best way for this. Add a
Scope viewer by dragging the PWMdutyCycle into the layout and select scope viewer. Add the
MotorSpeed by dragging this signal into the Scope window. Press Ctrl+R to go into Resize and Move
mode and place the viewers in a convenient location.

Since the reaction of the electric motor is quite fast it wouldn’t make sense to log data at low frequencies,
the Base Sample Time of the model was already set to 1ms but HANtune by default only requests data
once in every 10 cycles. In our case this would mean it would sample at 100Hz or every 10ms. To increase
the frequency the Prescaler in the DAQ List Info window can be adapted. Set this value to 2 to log at
500Hz, faster isn’t possible because of the limited bandwidth over USB. See the next page for the
location of this setting.

Page 22

Workshop Index, v0.5

HANtune version 2.
File Communication Window Preferences Help

ASAP?2 File || test
Dapth 0/5] All hd] =
Esignals (9) PuwmDutyCycle Dze —
— - Button b Yoy - Maodify options
H Encodervalue P~ e N
- MotorSpeedFilterad I O Step 25% 4P Set options ‘@I@g
= E Motorspeedunfiltered _
. = rvvenycice © step so%
% B PWMdutyCycleMultiplied | = ~ Desciption Value
= & s1_cPuload (7)) Step 75% Zord .
] SI_FreeHeap B

L "] 51 FreeStack A () step 100%
— - Step 25% 250

] n 3
% Search ASAP2 File IiELEEEES | r—— s00
E DAQ List Info] 100 E
T D Name Fresc.. Freg.. Active P | O E— SO SO S Step 75% 750 | e
E D1 |Default | 2 s00Hz V| ||| &n Step 100% 1000
= | OO OSSOSO SO TR Rl E——

DAgLi [o e) CAddcton Removecpen S
., || Signals D1 H
£ autton 0 !
é EncoderValy, 4n :
= MatorSpee H H H
S | MotorSpeedunfiltered an

PUUMdutyCycle | — SRS N N SRS N O S N —
[PwMdutyCycleMultiplied

SI_CPUload 10

S1_FreeHeap

SI_FreeStack

oo:32:20 0oo:32:25 00:32:30 00:32:35 00:32:40 00:32:45
0= 1005 30sec ¥ Save image
Search DAQ Lists Al « | [T] 3
Connected: HANcoder Oli... ||Errors:0FF || ~14% Max: 10... | [BH | s00kz | | | | | [Logfile: OFF

The first test is just giving the system a simple step input to look at the response of the system.
Unfortunately because of the difference in magnitude between the PWMdutyCycle and the MotorSpeed it
is difficult to see when the input was given. To fix this you can is multiply the PWMdutyCycle in the Simulink
model by 1000 so it becomes clearly visible on the scope in HANtune.

FPWM Set Duty Cycle

PwmDutyCycle FUMEmCyoe TIMZ - CON3 - D2 PN

Y

Censtant PWM Duty Cycle

=
PWM dutyCyceMutiiplied —

Terminator

This isn’t strictly necessary. The following Scope image can be obtained when giving a step input to the
electric motor.

— PwihidutyCyclemultiplied — MotorspeeduUnfitered

0,000

75,000
- AN .

AN\ \ A SN AN // — /
70,000 R ¥ ,

65,000

0,000

55,000

50,000

45,000

40,000 f

35,000

30,000

25,000 /

20,000 f

15,000

10,000 f

5,000 I/
0

00:15:25,200 00:15:25,300

00:15:25,400 00:15:25.500 00:15:25.600 00:15:25,700 00:15:25.800 00:15:25.900 00:15:26.000 00:15:26.100

Page 23

Index, v0.5

This first test shows a step response of a second order system. It is evident from this graph that the second
order is relatively small compared to the first order. Also there seems to be a lot of noise on the signal.
This is probably because a derivative is used to determine the speed and there is a little noise on the
encoder value. To check this assumption the same test is performed and a graph of the encoder value is
created.

— PWMdutyCycleMultipied — EncoderValue

80,000

75,000

70,000

65,000

60,000

55,000

50,000

45,000

40,000

35,000

30,000 t

25,000

20,000

15,000

10,000

5,000 e

00:24:27.200 00:24:27.300 00:24:27.400 00:24:27.500 00:24:27. 600 00:24:27.700 00:24:27.800 00:24:27.900 00:24:28.000 00:24:28.100

It turns out that on the encoder value there is also some noise, this is the source for the noise on the motor
speed. At the moment it is unclear where this disturbance is coming from and it will be ignored for now.

When the Radio button editor is used with the settings recommended above, the step from 0 to 25%
causes the motor speed to increase to 20.000 (encoder pulses per second) The step from 25% to 50%
only causes an increase in speed of 5000. It's clear that the motor is highly non-linear at the higher

) . L . o/ s
© Sctoptions = eem| speeds. To keep the modeling simple only inputs up to 30% will be used. In
this part the motor is still fairly linear and thus easy to model. The Radio
Desciption e button editor should reconfigured to make the following steps: 10%,
zero| o 15%,20% and 30%. Right click on one of the options to reconfigure the
Step 10% 100 Sefﬁngs'
Step 15% 150
Step 20% 200
Step 30% 300
Add option] [Remove option]

5.2 Logging data with HANtune

The controller is reset to and HANtune is reconnected to reset all values to zero. Logging is now started by
clicking the Logfile bar on the bottom of HANtune. The Logfile bar is green when logging is enabled. The

name of the Logfile is showed in the same bar. \
[Errors: OFF | ~ 14% Max: 10... soohz [= Logfile: StepTests2(1161206_204736.csv

When logging has started it is time to give the system a number of input steps. This can now easily be
done with the RadioButton editor. In this example the following step sequence is used:

Page 24

Workshop Index, v0.5

Input: [0, 10%, O, 10%, 0, 10%, O, 15%, O, 15%, 0, 15%, 0, 20%, 0, 20%, O, 20%, 0, 30%, 0, 30%, O,

30%)]

Between each change is approximately 2 seconds, this is because the fall time of the system is

approximately 1.2 seconds. After the sequence is done, press the Logfile bar again to stop logging.

5.3 Reading the data in Matlab

Now it is time to read the data from the logfile. For this Matlab has the convenient data import wizard: in
the Matlab command window type: viimport Choose File and select the csv file that HANtune has created.
The name of this file begins with the HANtune project name (newProject if the project hasn’t been saved

yet) and ends in the date and time. For example: ProjectName20161206_194551.csv

When the file is opened select Semicolon at the Column delimiters field and set the Variable Names

Row to 6. Next select the data, easiest is to select the first row and then press Ctrl+Shift+End.

4 Import - C\Users\la_obwif\Desktop\StepTestWorkshop\StepTests20161206_194551.csv

IMPORT

O Delimiteg 01U delimiters: Range: [p7:04186 v O Replace ¥ \unimportable cells with NaN i ol 14
Semicolon - - HH Matrix _—
~ Variable Names Row:
Fored WHth a0 options w00 e Roe 6 - Cell Arrav___ Iy y | Selecimn =
DELIMITERS SELECTION IMPORTED DATA UNIMPORTABLE CELLS IMFORT
| StepTests20161206_19455Lcsv < |
A B C D H F G H I J

Time Button Encod MotorSp... MotorSp...PWMdut...PWMdut...SI CPUlo... SI_FreeH... SI_FreeS...

NUMBER YNUMBER ~NUMBER ~NUMBER ~NUMBER ~NUMBER ~NUMBER ~NUMBER ~NUMBER ~NUMBER ~

1 |Project:S..

2 ECUHA..

3 DAQ List..

4 Date: Tu..

5 XCp XCp XCP XCP XCP XCP XCP XCP XCP
6 Time: Button Encoder.. |MotorSp.. |[MotorSp.. |PWMdut... |PWMdut... |SI_CPUlo... [SI_FreeH... [SI_FreeSt...
7 |0.00000 |0 2314167 |0 0 0 0 32 352 5256
8 |0.01200 O 2314167 |0 0 0 0 32 352 5256
9 0.01800 0 2314167 |0 0 0 0 32 352 5256
10 |0.03000 |0 2314167 |0 0 0 0 32 352 5256
11 j0.04200 |0 2314167 |0 0 0 0 32 352 5256
12 |0.04800 |0 2314167 |0 0 0 0 32 352 5256
13 |0.06000 |0 2314167 |0 0 0 0 32 352 5256
14 007200 |0 2314167 |0 0 0 0 32 352 5256
15 |0.07800 |0 2314167 |0 0 0 0 32 352 5256
16 |0.09000 |0 2314167 |0 0 0 0 32 352 5256

Next click on the Import Selection button and the Data will automatically be added to your workspace. If

the variable names already exist in the workspace the wizard will add a number to the end.

Page 25

Index, v0.5

5.4 Using the System ldentification Toolbox

With the system identification toolbox from Matlab it is possible to estimate a model from just the input
and output data. Type: ident in the command window to start the System Identification tool. (If the warning:
Undefined function or variable ‘ident’. shows, the toolbox might not be installed)

B System Identification Tool - Untitled S e S|

File Options Window Help
Import data x| Import models x|

‘ Operations ‘

<— Preprocess v

1

Working Data

Estimate — =
Data Views Wlodel Views
To To
Time piot Rloriyace == Mode! output Transient resp Nonlinear ARX

Data spectra Model resids Frequency resp Hamm-Wiener

Frequency function]

] Zeros and poles

Noise spectrum
Trash Validation Data

Compiling

Next select the data by clicking on the pull-down menu in the upper left corner and selecting Time
Domain Data... A dialog appears where the input and output variables can be chosen. Select the
PWMdutyCycle as input and the MotorSpeed as output. Click import to send the data to the System
Identification Tool. When the data is imported successfully the Import Data window can be closed again.

Bl Import Data & = X

Data Format for Signals

I Time-Domain Signals - I

| Workspace Variable

Input: PWIdutyCyclet I

| Output MotorSpeedUnfitered]

Data Information

Data name: steptestdata

Starting time 1

Sampling interval 1

Page 26

Workshop Index, v0.5

B System Identification Tool - Untitled gm
Eile Options Window Help
Import data =) Import models 2
4 Operations ‘
< Preprocess |
mydata 4 11 |
=
mgdata
Working Data
Estimate — =
Estimate —
Data Views Transfer Function Models... Wodel Views

State Space Models...

D Time plot Process Models... D Mode! output I:‘ Transient resp Monlingar ARX
Py | Models...

I:‘ Data spectra NZ':;”DE:T:‘“L:" D Model resids. I:‘ Freguency resp Hamm-Wiener

[Frequency function Spectral Modeks... || zeros and poles
Correlation Models. .. dat
Refine Existing Models... L_mycata | I:‘ Noise spectrum
Quick Start alidation Data

L inserted. Double click on icon for text information

From the imported data the model can be estimated. Click on the drop down menu and select Transfer
Function Models...

I'| Model name: tf2 #

Number of poles: |1

Number of zeros: |0

5 Continuous-time 'j'Dis[rete-iime (Ts=1) Feedthrough

» 1/0 Delay

» Estimation Options

Estimate H Close H Help

Transfer Function Identification

Estimation data: Time domain data mydata

Data has 1 outputs, 1 inputs and 18354 samples.
Number of poles: 1, Number of zercs: 0
Initialization Method: "iv"

Estimation Progress

lnitiallzing model parameters...
Initializing using "iv" method...
done.

Initialization complete.

Nonlinear least sgquares with automatically chosen line search method

Bisections

m

Norm of First-order Improvement (%)
Iteration Cost step cptimality Expected Achieved
0 2.32315e+07 - 71.9 1.9%e-16 -

1 2.32315e+07 1.84e-05 3.27 1.9%e-16 4.97e-09

=1

Estimating parameter covariance...
done.

Result
Termination conditicn: Near (local) minimum, (norm{g) < tol).

Number of iterations: 1, Number of function evaluations: 3

Status: Estimated using TFEST with Focus = "simulation™
Fit to estimation data: 81.49%, FPE: 2.32391e+07

M Stop

Close

A dialog appears where the numbers of poles and zeros can be
chosen. Choose 1 pole and no zeros, although this is wrong the

motor will be modeled as a first order system.

Click on estimate to start the estimation process. The time it takes
will depend on the data points and the order of the system.

Once the estimation process is finished it will show
the fit to estimation percentage. This percentage
tells how close the models comes to the input
output data. In this example 81% is achieved. The
noise that was on the output signal could be a
possible cause for the poor result. The tool has
options to filter the data prior to model
estimation. This should be enough to make a
decent controller. If the controller requirements,
like overshoot and rise time, are though it is
necessary to get a better model. The progress
report can now be closed.

To check the transfer function simply double click
on the result in the System lIdentification Tool. See
next page

Page 27

Index, v0.5

‘Data}model Info: tf1 -

Model name: 1
Color: [0.0.1]

From input "ul"™ to output "yl": -
5.643 i

s + 0.006628
HName: tfl)

e

Diary and Motes

% Import

[Present | [Close | [Help]

This transfer function can be used in a plant model. Be aware that this
is the input output relation from duty cycle to motor speed instead of

from duty cycle to motor position [encoderpulses].

Page 28

Workshop Index, v0.5

APPENDIX 1: MODEL SETTINGS FOR MODEL REFERENCE

Although in this workshop the HANcoder_Olimexino_Controller.slx is already prepared for use as a
referenced model, the settings that are changed are shown in this section so users can make the changes to
their own models if model referencing is needed.

All the variables in the workspace can be ‘accessed’ by all referenced models used by Simulink. This
means that if a model would be referenced twice the variable used by this model would be read/written
twice. This could give serious data integrity problems. To prevent this Matlab forces the user to set the
maximum number of instances allowed to 1. An error will show when the referenced model uses global
variables (in the base workspace) and the maximum number of allowed instances is set to ‘Multiple’. The
setting can be changed in Configuration Parameters --> Model Referencing

If multiple instances of the model are used the model workspace instead of the base workspace should be
used. This workshop will not treat this subject any further.

e ~
wa) Configuration Parameters: HANcoder_Olimexino_Controller/Co ion (Active) @
Select: Build options for all referenced models e

Solver Rebuild: l[f any changes detected
Data Import/Export
» Optimization Parallel
+ Diagnostics [C] Enable parallel model reference builds
Hardware Implementation
Model Referencing MATLAB worker initialization for builds: |None =

> Simulation Target

* Code Generation Options for referencing thi_s model

‘ ITntaI number of instances allowed per top model: ‘One ~ |I

Propagate sizes of variable-size signals: ‘Infer from blocks in model '|

[T] Minimize algebraic loop occurrences
[Propagate all signal labels out of the model
[7] Pass fixed-size scalar root inputs by value for code generation

Model dependencies:

< 1h 3

9 I oK H Cancel H Help l Apply

The next setting that needed to be changed was the way Simulink initializes the initial conditions for
conditionally executed subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time Integrator
blocks. The default setting is ‘Classic’, this mainly ensures compatibility with older models, the setting needs
to be changed to ‘Simplified’ in order to make model referencing work. Future versions of HANcoder will
have the correct setting by default.

Page 29

Index, v0.5

Select: Data Validity =
Solver Signals.
Data I Export
b Ozt?mirz"apt?;f po Signal resolution: lEpricit and implicit '] Detect overflow: lwaming ']
4 Diagnostics Division by singular matrix: [none '] Inf or NaN block output: [none ']
Sample Time
Data Validity Underspecified data types: [none '] "rt" prefix for identifiers: [error ']
gﬁgg?\:’gsmn Simulation range checking: [none ']
Compatibility Parameters
Model Referencing
Saving Detect downcast: [error '] Detect overflow: [error ']
Stateflow N Detect underflow: [none '] Detect precision loss: [none '] 1
Hardware Implementation
Model Referencing Detect loss of tunability: [waming ']
> Simulation Target
1> Code Generation Data Store Memory Block
Detect read before write: [Use local settings '] Multitask data store: [waming ']
Detect write after read: [Use local settings '] Duplicate data store names: [none ']
Detect write after write: [Use local settings >]
Merge Block

Multiple driving blocks executing at the same time step will result in an error when "Underspecified initialization detection

"Simplified".

Model Initialization

I Underspecified initialization detection: [Simpliﬁed v]l

Debugging
Array bounds exceeded: [none he]

oo 0000 @ o TS - - 1

Q [ok || cancel |[Help][Apply m‘

The last error that can occur is an error about signal logging. Matlab upgraded the way it logs signals
and the HANcoder models have not yet been upgraded to ensure backwards compatibility. When running
the system an error shows in the diagnostics window. To solve the error simply choose the option to update
all models referenced directly or indirectly by the top model.

— e = = . —
B 1% %R B v -l @ 1@
Base_Model_Co..3 . HANcoder_Olim...c0

A\ Using a default value of 8.1 for maximum step size. The simulation step size will be equal to or less than this value. You can

disable this diagnostic by setting 'Automatic solver parameter selection' diagnostic to 'none' in the Diagnostics page of the
configuration parameters dialog

ﬁ The top model 'Base_Model_Completed' has been upgraded to use Dataset format for signal logging. However, referenced model
'HANcoder_Olimexino_Controller' or one of the models it directly or indirectly references is using ModelDatalogs format. To
eliminate this error, do one of the following:

- Use Simulink.SimulationData.updateDatasetFormatlLogging to update all models referenced directly or indirectly by top model
'Base_Model_Completed' to use Dataset format (run this command in MATLAB).

- Use Simulink.SimulationData.updateDatasetFormatlogging to update 'H&Ncoder_Olimexino_Controller' and any models it references
directly or indirectly to use Dataset format (run this command in MATLAB).

- Disable logging for all signals in the Model block 'Base_Model_Completed/Model'. In the Signal Logging Selector dialoeg,
uncheck this Model block in the Model Hierarchy (open the dialog).

Component: Simulink | Category: Block error

~ Simulation

Page 30

