
  

 

Workshop 
HANcoder 
STM32 Target 

 

 

 

Version 0.5 
10/17/2016 

Workshop HANcoder STM32 Target 

 

A guide to build a simple motor control model and use HANtune 

with it. 

 



Workshop HANcoder STM32 Target, v0.5 

 

Page 1 

 

Workshop HANcoder STM32 
Target 
 
W O R K S H O P  H A N C O D E R  S T M 3 2  T A R G E T  

Contents 

VERSIONING ....................................................................................................................... 2 

INTRODUCTION ................................................................................................................... 3 

1 EXPLANATION OF THE BASE MODEL .......................................................................... 4 

The inputs subsystem ......................................................................................................................... 6 

The algorithm subsystem ................................................................................................................... 6 

The outputs subsystem ....................................................................................................................... 6 

The configuration blocks ................................................................................................................... 7 

The System Information Subsystem ................................................................................................. 7 

2 ADDING THE BLOCKS TO CONTROL THE MOTOR....................................................... 8 

3 CONNECT WITH HANTUNE ........................................................................................ 16 

4 OPTIONAL EXTRA ...................................................................................................... 26 

 

  



Workshop HANcoder STM32 Target, v0.5 

 

Page 2 

VERSIONING 

Nr Date Person Changes Status 

0.1 01-12-2014 JAD van 

Kolfschoten 

First version Concept 

0.2 04-12-2014 JAD van 

Kolfschoten 

Added the optional extra. Renewed some 

screenshots 
Concept 

0.3 14-01-2016 JAD van 

Kolfschoten 

Updated to use with USB Bootloader Concept 

0.4 17-10-2016 G Jansma Updated guide for HANcoder 0.4 blockset Concept 

0.5 23-11-2016 JAD van 

Kolfschoten 

Updated guide for HANcoder 0.5 blockset Final 

 

  



Workshop HANcoder STM32 Target, v0.5 

 

Page 3 

INTRODUCTION 

This document will describe the steps to form a model with which to control a motor via a potentiometer 

and read the values with HANtune. 

 

figure 0-1 The workshop setup 

For this workshop we will be using an Olimexino as microcontroller board. On top of the Olimexino is a 

shield with a motor driver or H-bridge, the Ardumoto. The H-bridge is controlled with a PWM signal for 

the speed on pin D3 and a digital signal for controlling the direction on pin D12. A small DC motor which 

has an encoder connected to the shaft on one side and a gearbox on the other side is connected to the H-

bridge. The encoder is connected to pins D6 and D7 and gives around 14000 pulses per rotation. Next to 

that there is a potentiometer attached to the Olimexino on pin A3. The potentiometer will serve as a 

setpoint for the motor speed. The further the potentiometer is turned the faster the motor should turn. 

Before being able to start with this process it is necessary to install certain programs such as MATLAB. 

These steps are described in ‘Getting Started Guide Olimexino.docx’. 

It is advised to use MATLAB 2013b or later for this workshop. 

 

  



Workshop HANcoder STM32 Target, v0.5 

 

Page 4 

1 EXPLANATION OF THE BASE MODEL 

Open the Simulink model by starting MATLAB and navigating to the HANcoder directory where the 

Simulink models are located, the ‘Target’ directory.  By double-clicking the provided model file, i.e. 

‘HANcoder_Olimexino.slx’, from within MATLAB the model is started.  

 

The right directory can easily 

be found with the browse for 

folder button. 

 

 

 

 

 

 

Make sure that the Target folder is selected. Otherwise Matlab will have trouble finding the necessary 

files to build HANcoder models. 

NOTE: Matlab versions prior to the 2013b release cannot open the .slx files and instead the .mdl files for 

these earlier versions can be found in the zip file: Template models for older versions.zip. 

  

Figure 1-1 Browse for folder button Matlab 

Figure 1-2 select target folder 



Workshop HANcoder STM32 Target, v0.5 

 

Page 5 

If the default project is used, the following screen will appear: 

 

Figure 1-3 View when opening the model 

Nothing in this part of the model can be changed, otherwise the code generation will no longer work! 

 

When double-clicked on the picture of the controller, the content of this block is shown: 

 

Figure 1-4 Template model delivered with blockset 

Figure 3-2 shows the template model. This is the base of every new project. This simple project makes the 

green LED blink at 5Hz when the button on the side of the board isn’t pressed and at 10Hz when it is. It is 

advised to keep this functionality in your project so you can always check if the software is still responsive. 

The template model consists of: 

- The inputs subsystem 



Workshop HANcoder STM32 Target, v0.5 

 

Page 6 

- The algorithm subsystem 

- The outputs subsystem 

- The configuration blocks 

- The system Information subsystem 

The inputs subsystem 

 

Figure 1-5 Inside the Inputs subsystem 

The inputs of the model are placed inside the Inputs subsystem. The inputs are connected with the 

Algorithm through Outport blocks (the block with ‘Button’ below it in the figure above).  

The algorithm subsystem 

 

 

 

 

 

 

 

 

 

In the algorithm subsystem the functionality is placed. The subsystem is connected with the inputs and 

outputs through In- and Outport blocks. The functionality can easily be transferred to another hardware 

platform because there are no hardware dependent in- or outputs in this part, it is recommended to work 

the same way in your own projects. 

The outputs subsystem 

 

Figure 1-7 The outputs subsystem template model 

In here the outputs of your model are located. 

Figure 1-6 The algorithm subsystem template model 



Workshop HANcoder STM32 Target, v0.5 

 

Page 7 

The configuration blocks 

These blocks are the settings of the model.  

The Base Sample Time determines the interval at which the model is run. You can 

add blocks to the model which run at lower rates but not faster. In the template 

model the base sample time is 10ms so the model can run at a 100Hz. 

The XCP on USB config block configures the Olimexino to communicate to HANtune 

over USB.  

The custom software ID block lets you choose a name and version number for your 

model, this will be used when connecting with HANtune. 

With the Build settings you can let HANcoder automatically add all signals and 

parameters in the workspace of the project. This is important to communicate with 

HANtune. 

The Auto Flash function flashes the software automatically after a successful build.  

 

The System Information Subsystem 

 

The System Information Subsystem gives you information about the 

Load, Heap and Stack of the system once the model is running. 

This way you can monitor how many resources your software 

program uses. The Signals are already defined by HANcoder and 

will be visible in HANtune. 

 

 

 

 

 

 

 

 

 

  

Figure 1-8 Configuration 

blocks template model 

Figure 1-9 The System Information subsystem 

template model 



Workshop HANcoder STM32 Target, v0.5 

 

Page 8 

2 ADDING THE BLOCKS TO CONTROL THE MOTOR 

To add a block for the Olimexino click on the ‘Library browser’ button in the toolbar of the model: 

 

Figure 2-1 Simulink Library button 

 

 

 

 

Figure 2-2 Simulink library 

Open the ‘HANcoder STM32 Target’ toolbox by clicking on it. 

If the library isn’t visible try refreshing the library tree view by pressing F5. If there is a Pop up bar that 

says ‘Some libraries are missing repository information. Fix’ Click on Fix. Turn on ‘Generate repositories in 

memory’ in the pop up. 



Workshop HANcoder STM32 Target, v0.5 

 

Page 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the HANcoder STM32 Target expands the HANcoder blocks for the compatible STM32 

development boards are visible.  

Figure 2-3 Library pop up 

Figure 2-4 library Fix pop up 

Figure 2-5 Simulink HANcoder STM32 Target Library 



Workshop HANcoder STM32 Target, v0.5 

 

Page 10 

To the right, the content of the toolbox is placed. This content is sorted in a tree like view for easy access. 

Use the help files to determine the proper use of a block. These are accessible by right clicking on a block 

and then selecting “Help”. 

When the library is opened, go to Analog Inputs. 

 

figure 2-6 HANcoder STM32 Olimexino Library: analog inputs 

Click and hold the block called Analog Input and drag it into the model. Now go to PWM Outputs in the 

library and do the same for the PWM Set Duty Cycle and PWM Init block. You should end up with the 

following model: 



Workshop HANcoder STM32 Target, v0.5 

 

Page 11 

 

figure 2-7 Model with PWM and analog input 

First we will set up the blocks for the right pin on the Olimexino. We start with the settings of the analog 

input. Open the settings dialog by double clicking on the block and select pin: CON2 – A3 from the 

dropdown menu.  

 

figure 2-8 Analog input parameter: CON2 - A3 

It is not necessary to change the sample time. Note that the output is 0-4095. Save the settings by clicking 

OK. 



Workshop HANcoder STM32 Target, v0.5 

 

Page 12 

Next up is the PWM Init block, double click the block to adapt the settings. scroll down until you will see 

the following screen: 

 

figure 2-9 PWM init Parameters 

Note that the input is 0-1023.  

The Ardumoto is connected to pin D3 on the Olimexino so we have to choose TIM2: D2 & D3 & n/a & D0 

In order to turn on only that specific pin go to the tab of Channel 2 and select: Generate PWM signal on 

channel 2 in the dropdown menu PWM module the pins are given in order of channel number; D2 is 

channel 1, D3 is channel 2, channel 3 is not available and D0 is channel 4 

 

figure 2-10 Turn off PWM signal generation channels 1,3,4 

Further we have to select a frequency for the PWM signal to drive the motor, a recommended frequency 

would be 10000Hz. Go back to the ‘General’ tab and replace 1004 by 10000. Close the dialog by 

clicking OK. 

 



Workshop HANcoder STM32 Target, v0.5 

 

Page 13 

Up next is the PWM Duty Cycle block. Set the parameter Output pin to TIM2 – CON3 – D3  

 

figure 2-11 Parameter setting PWM Duty Cycle 

Next we will connect the two blocks with each other, however we have seen that the Analog input has a 

range of 0-4095 (0 to 3,3V) and the PWM output has a range of 0-1023 (0-100%). The value of the 

analog input is 4 times higher than the input necessary for the PWM Output. Therefore we need to divide 

the value of the analog input by 4, for this we add a gain block, this can be found in the Simulink library 

under Simulink -> Math Operations. Open the library, as previously described, and find the ‘Gain’ block 

and drag it into the model. Put it between the Analog Input block and the PWM Outputs block and 

connect the blocks by clicking and holding the left mouse button and drag the output of one block to the 

input of the other block. If the blocks are not properly connected the line will be red, the line becomes 

black when the blocks are properly connected. 

 

figure 2-12 connect the blocks 

When the blocks are connected double click the gain and enter the value 0.25 or 1/4 for Gain. Go to the 

Signal Attributes tab and change the Output data type: from Inherit: Inherit via internal rule to uint16. 

When the output data type is set to ‘Inherit: Inherit via internal rule’ Simulink will choose calculate the 

appropriate data type itself. Because a fraction is used, Simulink will most probably use a fixed point 

data type. The input of the PWM Outputs block however needs to be an unsigned 16 bit unsigned 

integer(uint16), therefore we choose this manually. Close the dialog by clicking OK. Note that if the block 

is too small to show the parameter it will be replaced by -K-. 

For monitoring the value of the potentiometer a name must be given to this signal. Double click the line 

going from the Analog Input to the Gain block and give it a name by typing. Do not press enter but simply 

click somewhere else in the model when done. 

 

  



Workshop HANcoder STM32 Target, v0.5 

 

Page 14 

Now it is time to set up the model to control the motor direction. 

Open the Simulink library browser by clicking the library browser button and go to the Olimexino STM32 

in the ‘HANcoderSTM32 Target’ library. Drag a Digital Output block from the library to the model. 

Double click the block and select pin: CON4 - D12. Leave the configuration on Push pull. Close the dialog 

by clicking OK. 

Next go back to the Simulink library browser and navigate to the Simulink standard library (the first 

library in the list). Drag a constant block into the model from the Simulink->Sources tab. 

Connect the constant block with the Digital Outputs block. Double click the constant block and enter 

‘motorDirection’ in the Constant value box. Set the sample time to -1. In the Signal Attributes tab set the 

output data type to Boolean and click OK  

 

We are now ready to generate the code and test the program on the Olimexino. To start the code 

generation, click the Build model button in the toolbar of the model or press ctrl+b. 

 

figure 2-13 The Build model button 

A warning will appear to indicate this software is only 

meant for use in non-commercial projects. Click OK to 

proceed. 

 

 

 

Next a pop-up will appear because the value of the 

constant motorDirection is still unknown. Leave the value ‘0’ 

and click OK to continue. This will add the parameter to the 

workspace in Matlab. See the next step down below. 

  



Workshop HANcoder STM32 Target, v0.5 

 

Page 15 

If the program was build successfully by Matlab, the program will be flashed automatically because of 

the Build settings block in your model. This means the flashing program, MicroBoot, will be started 

automatically with the right settings: 

 

 

Press the reset button to start the flash procedure and check if the system works.  

  



Workshop HANcoder STM32 Target, v0.5 

 

Page 16 

3 CONNECT WITH HANTUNE 

Start HANtune by double clicking HANtune.exe.  

 

figure 3-1 HANtune 

On the left in the tab Project data right click on the folder ASAP2 files and click ‘Add ASAP2 file’. Choose 

the HANcoder_Olimexino.a2l file located in the same folder as the model file: ‘Target’ and click open. 

The .a2l has been added to the project and appears in the window. Double click the file to load it, it will 

become bold when loaded.  



Workshop HANcoder STM32 Target, v0.5 

 

Page 17 

 

figure 3-2 HANtune ASAP2 file 

Next it is necessary to create a Layout, this is done in a similar way as adding the ASAP2 file. Right click 

the Layouts folder and select ‘New Layout’. Give the new layout a name and load it by right clicking on it 

and selecting ‘Load layout’ or by double clicking it. 

Now we can start adding viewers to the layout. In the tab ASAP2 Elements located on the left on the 

screen all the signals and parameters are listed. 

 

figure 3-3 Parameters and signal in HANtune 



Workshop HANcoder STM32 Target, v0.5 

 

Page 18 

In order to add a viewer, right click on a signal and select the viewer of choice. In this example we will use 

the ‘GaugeViewer’ for the AnalogValue. The viewer is now automatically added to the layout. Because 

the data type is an unsigned 16-bit integer the viewer will automatically set its range to the minimum and 

maximum value of the data type, in this case 0 to 65535. The range of the viewer can be changed by 

right-clicking on it and selecting ‘Modify display range’. 

 

figure 3-4 settings gauge viewer 

A dialog appears where the upper and lower limit of the GaugeViewer can be set. We know the 

minimum and maximum value of the Analog Input block are 0 and 4095 (from the description in the 

settings dialog) so we will set the maximum value to 4095.  

With the ‘Edit color’ button you can change the color of the needle of the dial. Click OK to close. 

Next we will add a MultiEditor by right-clicking on the parameter motorDirection and choosing 

‘MultiEditor’. The MultiEditor will appear in the screen on top of the GaugeViewer. It can easily be 

relocated to the desired position. 

We now have finished our (very basic) layout and we are almost ready to connect to the Olimexino. 

Because HANtune can connect via CAN, USB and Ethernet (not for Olimexino) we first have to set up the 

right interface in HANtune. Go to Communication  Communication Settings and select XCP on 

USB/UART as communication driver from the drop down menu.  

 

figure 3-5 HANtune communication settings 

HANtune uses a virtual COM-port to connect to the Olimexino. To find out which COM-port is connected to 

your Olimexino, follow the following steps: 

- Type device manager (dutch: apparaat beheer) in the search section of the startmenu and press 

enter. 



Workshop HANcoder STM32 Target, v0.5 

 

Page 19 

- Expand Ports (COM & LPT) and search for STMicroelectronics Virtual COM Port  

 

figure 3-6 Device Manager 

Go back to HANtune and click on the tab UART (in communication settings) to set the right COM-port in the 

drop down menu UART port. 

  

 

We are now ready to connect to the Olimexino, this can be done in three different ways: 

1. Press F5  
2. Go to Communication -> Connect to XCP device in the menu bar  
3. Click the connection indicator in the lower left corner of HANtune 

 

figure 3-8 connecting to the hardware (F5) 

figure 3-7 Communication settings UART 



Workshop HANcoder STM32 Target, v0.5 

 

Page 20 

The connection dialog will now appear: 

 

figure 3-9 Connection progress 

By clicking ‘Connect & Request’ HANtune will connect to the Olimexino and it will request the values of the 

parameter, in this case only the value of ‘motorDirection’. 

By clicking ‘Connect & Calibrate’ HANtune will connect to the Olimexino and it will send the values of the 

parameters in the editors to the Olimexino. 

It is usual to use ‘Connect & Request’ so we will use this option here as well.

 

figure 3-10 Connection with target 

As soon as HANtune has a connection the connection dialog will disappear and the connection indicator 

will turn green. 

Connection indicator 



Workshop HANcoder STM32 Target, v0.5 

 

Page 21 

Now when you turn the knob on the potentiometer you can see the value of the analog input in HANtune. 

And when toggling the value of the motorDirection you can change the turning direction of the motor. 

In the next section we will add a block to read the motor position.  

The motor is connected to an encoder. In the blockset a special block is present to directly read from an 

encoder. Go to HANcoder STM32 Target  Olimexino STM32  Timer Inputs in the ‘Simulink Library 

Browser’ and drag the ‘Quadrature Encoder Get’ block to the model. Also drag a Terminator block from 

Simulink  Sinks and a Discrete Derivative from Simulink  Discrete into the model.  

 

figure 3-11 Quadrature Encoder Get, Discrete Derivative and terminator Block 

Because the standard settings are already right there is no need to set up the Quadrature Encoder Get 

block. Double-click the Discrete Derivative block and change the Gain value to 0.01, this is done because 

the encoder gives around 14000 pulses per rotation and the speed would be very high with a gain value 

of 1.  

 

figure 3-12 Discrete Derivative parameters 

In the Signal Attributes tab; change the Output Data Type to single because else MATLAB will 

automatically determine the ‘appropriate’ data type. Close the window by clicking ‘OK’. 

 

 

 

 

 

 

 

 



Workshop HANcoder STM32 Target, v0.5 

 

Page 22 

 

Now connect the output of the ‘Quadrature Encoder Get’ to the input of the ‘Discrete Derivative’ and 

connect the output of the ‘Discrete Derivative’ to the terminator. 

Name the output signal of the Quadrature Encoder Get ‘motorPosition’ and the output of the Discrete 

Derivative ‘motorSpeed’. Naming a signal is done by double clicking on the line representing the signal 

and typing the desired name. 

 

Rebuild the model by clicking the Incremental Build button or pressing Ctrl+b. Once the build procedure 

is complete go to HANtune and disconnect from the Olimexino. To disconnect, click on the connection 

indicator or press F5. The connection indicator will become gray.  

Now restart the Olimexino by pressing the reset button. The flashing should start automatically. Check if 

the motor still works. 

In HANtune we will need to reload the ASAP2 file. This is done by right-clicking the ASAP2 file in the 

Project data tab and selecting ‘(un)Load file’ and then right-clicking it again to load it by selecting ‘Load 

file’. 

 

figure 3-15 load new ASAP2 

Connect to the Olimexino by pressing F5 and select ‘Connect & Request’. 

figure 3-13 Discrete Derivative: Signal attributes parameters 

figure 3-14 Motor Position Model 



Workshop HANcoder STM32 Target, v0.5 

 

Page 23 

Go to the ASAP2 elements tab and add a digital viewer for motorPosition and motorSpeed by right 

clicking on the signal name in the treeview and selecting DigitalViewer.  

 

figure 3-16 Inserting signal to dashboard 

Test your program by turning the potentiometer. 

 

3.1 Working with an m-script 

Up until now all the signals and parameters were automatically added in HANtune. This is done by the 

Auto Add function located in the Build Settings block. When this function is turned on signals with a name 

and parameters in constant blocks will automatically be added to the workspace so that they can be used 

in HANtune. In large projects it might be desirable to have more control over which signals and 

parameters end up in HANtune. To do this the Auto Add function has to be turned off.  

Double click the Build settings block and turn off the 

Auto Add function. 

Next we will introduce a parameter which will be 

editable in HANtune. Double click the Gain block and 

change 0.25 or ¼ to gainValue. Press OK to close the 

dialog.  

Try to build the model by pressing the incremental 

build button or ctrl+b. An error will appear stating that 

the ‘gainValue’ is not defined. 

To define the parameter go to the Matlab Command window and type: 

gainValue = Simulink.Parameter; 

It will now show up in the workspace. Double click on the parameter name in the workspace to see its 

attributes: 



Workshop HANcoder STM32 Target, v0.5 

 

Page 24 

 The Value field is still empty []. Enter the value 

0.25, without the brackets. Another important setting 

is the Storage class, this should be set to Exported 

Global in order to be able to edit it in HANtune. 

Click OK to exit. 

Next we will add another signal, a line in Simulink, 

for viewing in HANtune. Open the library browser 

again and add a Counter Limited block from the 

Simulink Sources and a Terminator from the 

Sinks to the model. Connect the blocks and name the 

signal by double clicking it and typing: 

‘counterValue’. Double click the Counter Limited 

block and set the Upper Limit to 100 and the sample 

time to 0.1. 

 

 

Now we must define the signal in the command window: 

counterValue = Simulink.Signal; 

Double click the newly created signal in the workspace 

and set it up as shown. Note that only the Storage Class 

must be changed to make the signal visible in HANtune. 

The other changes are optional. Press OK to close and 

build the model once again by pressing Ctrl+b or the 

incremental build button.  

Flash the controller by pressing the reset button. 

 

 

 

 

 

 

Go to HANtune and reload the a2l file by double clicking it twice 

in the project data tab. After this reload the Layout by double 

clicking it.  

Now go to the ASAP2 elements tab and add a GaugeViewer for 

the newly added signal. Note that the name in HANtune is now 

Counter instead of counterValue. HANtune will automatically set 

the upper limit of the Counter to 100, just as defined in Matlab. If 

you add a MultiViewer for this signal as well you will see the 

Units. 



Workshop HANcoder STM32 Target, v0.5 

 

Page 25 

 

 

 

 

 

 

 

 

 

Instead of doing this by hand every time, it would be easier to have a script to do this for you. To create 

such a script click the New Script button in Maltab. 

Type (or copy) the following text: 

%% This script defines the parameters and signals for the HANcoder 

workshop 

% Defining the parameter gainValue 

gainValue = Simulink.Parameter; 

gainValue.Value = 0.25; 

  

% Defining the signal counterValue 

counterValue = Simulink.Signal; 

counterValue.StorageClass = 'ExportedGlobal'; 

counterValue.Min = 0; 

counterValue.Max = 100; 

counterValue.DocUnits = 'm/s'; 

counterValue.CoderInfo.Alias = 'Counter'; 

 

Save the script under any name you wish. This script defines gainValue and counterValue with exactly the 

same settings as previously done. Next time the model will be used the script can simply be run to define 

these parameters. 

 

This concludes this part of the workshop. 

  



Workshop HANcoder STM32 Target, v0.5 

 

Page 26 

4 OPTIONAL EXTRA 

A control model for the workshop set-up can be found in the Target directory. This model can control the 

electric motor’s position or speed. A torque control loop is also added for illustration but this requires a 

current sensor which is not present in the workshop set-up. 

For convenience the model is already placed in the HANcoder STM32 Target folder of the workshop, 

together with the HANtune project(.hml) file. 

Open the model by double clicking the DemoMotorController_Olimexino_STM32.slx file.

 

The model has the Analog input to read the potentiometer’s position, the quadrature encoder input to 

measure its position, the PWM output to control the motor speed and the digital output to change the 

direction. The only things that are different are the addition of a Stateflow chart, a PID controller 

subsystem and an analog input to be able to read a current sensor. The model will not be described any 

further in this document because comments are present in the model itself. 

Build the model by pressing the ‘incremental build’ button or pressing ‘Ctrl+B’.  

It is now time to tune the PID control loop with HANtune. Open the project ‘DemoMotorController.hml’ with 

HANtune by selecting ‘Open project’ from the ‘File’ menu or by pressing ‘Ctrl+O’. 

After opening the project load the a2l file and layout by double clicking on them. The last step is to 

connect to the Olimexino by pressing ‘F5’ and selecting ‘Connect & Calibrate’. (The connection settings are 

already stored in this project)  



Workshop HANcoder STM32 Target, v0.5 

 

Page 27 

The following should be visible now: 

 

On the top left you can switch between the different control modes. In the top a MultiEditor is located for 

each control mode, here the values of the P,I and D actions can be tuned. On the top right the control for 

switching between the potentiometer and HANtune is located. Here you can choose to use the 

potentiometer as input for the PID controller or the value HANtuneInput from the MultiEditor. Change the 

input to HANtune and test it by changing the value in HANtuneInput. 

Next click on the ScopePosition tab located on the top of the HANtune window. Here you can find a scope 

with the motor position and the desired position. 

 

Change the value of HANtuneInput and check the response in the scope. Using the graph of the step 

response tune the PID controller so it gives a better performance.  

You can add another MultiEditor to this tab with the PID settings for the position control. You can also move 

the MultiEditor from the Test tab by right clicking on its title bar and selecting ‘Move to tab’. It will then 

appear on the same location in the selected tab. 



Workshop HANcoder STM32 Target, v0.5 

 

Page 28 

 

When you have found good settings for the PID values save an image of the step response by clicking 

‘Save Image’ on the lower right of the ScopeViewer with the motorPosition and DesiredValue. 

You can save the settings by creating a calibration. To create a calibration go to the Project data tab, this 

is where the ASAP2 file and Layout is also located. Right-click on the folder ‘Calibrations’ and click ‘New 

calibration’, select any name you like. The settings of all the Editors which are visible in HANtune are now 

saved. You can always switch back to this calibration by right-clicking it and selecting ‘Load Calibration’. It 

is also possible to update the calibration when better settings are found by selecting ‘Update Calibration’. 

The final step of this workshop is to make a log file with HANtune and opening it in Microsoft Excel. First 

go to Preferences in the menu bar and click ‘User Preferences’. Here you can select the location where to 

place the log file. You are free to change it to any location or just leave it as it is. To start a log file go to 

Communication and select ‘Enable Datalogging’ or click the log file indicator in the status bar. The logfile 

indicator should become green. Stopping the data logging can be done in the same way as starting it. The 

log file is saved as a comma separated values file (.csv) This file can be opened easily with Microsoft 

Excel or with MATLAB by the ‘csvread’ or ‘uiimport’ functions. 

 

 


